

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public released; distribution is unlimited

LINEAR AND PLANAR ARRAY FORMATION IN
WIRELESS SENSOR NETWORKS

by

Charalampos Gkionis

June 2007

 Thesis Advisor: Murali Tummala
 Thesis Co-Advisor: John McEachen
 Second Reader: T. Owens Walker III

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Linear and Planar Antenna Array in Wireless Sensor
Networks

6. AUTHOR(S) Charalampos Gkionis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Wireless sensor networking (WSN) is a relatively new field of research with many applications, both

military and commercial. In the military applications, WSNs could be used in hostile environments to minimize the
need for human presence. A WSN consists of a large number of small sensor nodes that are deployed in an area of
interest for collecting information. A subgroup of nodes then collaborate their transmissions to achieve beamforming.
The information collected by the WSN is relayed to an unmanned aerial vehicle (UAV), which is synchronized with
the transmission beam of the network. In this study, the positioning of the nodes in a WSN is investigated with the
main object to propose a method to find the best combination of nodes for beamforming given a random distribution
in the sensor field. Additionally, the method is expandable in two dimensions and capable of forming a planar antenna
array which will improve the beamforming gain. A simulation model was developed in MATLAB code to study the
formation of linear and planar antenna array of nodes. The existing iterative technique in the formation of a linear
antenna array is compared with the proposed and the results showed an improvement in linearity.

15. NUMBER OF
PAGES

124

14. SUBJECT TERMS sensor networks, array formation, distributed sensor network

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public released; distribution is unlimited

LINEAR AND PLANAR ARRAY FORMATION IN WIRELESS SENSOR
NETWORKS

Charalampos Gkionis

Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: Charalampos Gkionis

Approved by: Murali Tummala
Thesis Advisor

John McEachen
Thesis Co-Advisor

T. Owens Walker III
Second Reader

Jeffrey Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Wireless sensor networking (WSN) is a relatively new field of research with

many applications, both military and commercial. In the military applications, WSNs

could be used in hostile environments to minimize the need for human presence. A WSN

consists of a large number of small sensor nodes that are deployed in an area of interest

for collecting information. A subgroup of nodes then collaborate their transmissions to

achieve beamforming. The information collected by the WSN is relayed to an unmanned

aerial vehicle (UAV), which is synchronized with the transmission beam of the network.

In this study, the positioning of the nodes in a WSN is investigated with the main object

to propose a method to find the best combination of nodes for beamforming given a

random distribution in the sensor field. Additionally, the method is expandable in two

dimensions and capable of forming a planar antenna array which will improve the

beamforming gain. A simulation model was developed in MATLAB code to study the

formation of linear and planar antenna array of nodes. The existing iterative technique in

the formation of a linear antenna array is compared with the proposed and the results

showed an improvement in linearity.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE...2
B. RELATED WORK ..2
C. THESIS OUTLINE..4

II. WIRELESS SENSOR NETWORKS AND BEAMFORMING...............................5
A. OVERVIEW OF WSN ..5

1. Definitions and Description...5
2. Characteristics and Limitations ...6

a. Energy Efficiency..6
b. Density ...7

3. Architecture and Clustering ...7
4. Deployment...9

B. METHOD FOR DISTRIBUTING POWER USAGE ACROSS A
WSN [1]...9
1. Tasks Performed in Post Deployment Phase of a Distributing

Power Usage WSN ...10
C. BEAMFORMING..12

1. Linear Array Beamforming..13
2. Planar Array Beamforming..14

D. SUMMARY ..14

III. PROPOSED METHODS FOR BEAMFORMING ARRAY FORMATION
IN WIRELESS SENSOR NETWORKS..17
A. LINEAR ARRAY FORMATION ..18

1. Linear Array Formation using the Iterative Approach18
2. Linear Array Formation using the Concurrent Approach............20
3. Linear Array Formation using the Least Squares Line Fitting

Approach ..22
B. PLANAR ARRAY FORMATION ...25

1. Planar Array Formation using Concurrent Approach25
2. Planar Array Formation using the Least Squares Line Fitting

Approach ..29
C. SUMMARY ..30

IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS.........................33
A. PERFORMANCE EVALUATION METRICS ..33

1. Determination of the Reference Line ..34
2. Perpendicular Distance Error Metric...36
3. Inter node Spacing Error metric ...38
4. Total Distance Error Metric ..39
5. Planar Distance Error ...40

B. SIMULATION MODEL ...41
1. Inter-node Distance and Density in the Field41

 viii

2. Simulation Model ...43
C. LINEAR ARRAY RESULTS ...45

1. Seven-node Array at 300 MHz..46
2. Nine-node Array at 300 MHz..50
3. Seven-node Array at 900 MHz..54
4. Nine-node Array at 900 MHz..57

D. PLANAR ANTENNA ARRAY RESULTS AND ANALYSIS59
1. Planar Array of 3 3× Nodes at 300 MHz..60
2. Planar Array of 4 4× Nodes at 300 MHz ..62

E. SUMMARY ..65

V. CONCLUSIONS ..67
A. SIGNIFICANT RESULTS..67
B. FUTURE WORK...68

APPENDIX...69

LIST OF REFERENCES..101

INITIAL DISTRIBUTION LIST ...103

 ix

LIST OF FIGURES

Figure 1. Use of a UAV in distributing power usage of the sensor network (From
Ref.[1])...1

Figure 2. Transmit Cluster and Beamforming in WSN with Nodes Coordinating
Transmission (From Ref. [1]) ..2

Figure 3. Tiered Architecture in Low Rate Wireless Personal Area Networks (LR-
WPAN) (from [11]) ...8

Figure 4. An 1M × Uniform Linear Antenna Array...13
Figure 5. An M N× Antenna Array of Omni-directional Radiating Elements [15]14
Figure 6. Relative Orientation of the Nodes [3]..18
Figure 7. Five Nodes Not Suitable for Beamforming ...20
Figure 8. Five Node Ideal Linear Array with Inter-node spacing / 2λ Suitable for

Beamforming ...21
Figure 9. The Least Squares Line Fitting Solution ...22
Figure 10. Least Squares Line Fitting applied to Cluster..22
Figure 11. Formation of the Linear Array using Least Squares Error Fitting...................23
Figure 12. Formation of Linear Array using Least Squares Line Fitting after Rotation

by an Angle φ...24
Figure 13. Comparison of the Line Fitting (green line) Solution with the Iterative

Construction (red line) in MATLAB in a sensor field of size 210 10 m×
with 500 nodes ...25

Figure 14. Inter-node distances of Planar Array: Possible Positions of the CH in red
and the Participating Nodes are hollow circles..26

Figure 15. Solution and mirror images of the solution in the field27
Figure 16. Node Distances from the CH in a 3 3× Array...27
Figure 17. Nodes in Cluster to form a 3 3× Planar Array: (a) Least Squares Fitted

Lines and Ideal Node Positions; (b) Selected Sensor Nodes that are
Closest to the Ideal Locations ..29

Figure 18. Fitted Lines Rotated by an Angle ϕ in the counter clockwise direction: (a)
Least Squares Fitted Lines and Ideal Node Positions; (b) Selected Sensor
Nodes that are Closest to the Ideal...30

Figure 19. Sensor Nodes and the Reference Line ...35
Figure 20. Perpendicular Distance Error Measurement ..37
Figure 21. Internode Spacing Error between Ideal Node Positions and Perpedicular

Projections of the Actual Nodes along the Reference Line.38
Figure 22. Total Error Calculation ..39
Figure 23. Calculated Position Error for a Planar Antenna Array40
Figure 24. Number of Nodes within a Cluster for 2m and 4 m Communication

Distance for a 210 10m× sensor field...43
Figure 25. Simulation Model for the Construction and Evaluation of Linear and

Planar Antenna Array ..44

 x

Figure 26. Average Perpendicular Distance Error pε for 300 MHz and 7 Nodes
Linear Antenna Array for 1000 Monte Carlo Runs as a Function of the
Number of Nodes in the Sensor Field..46

Figure 27. Average Inter-node Spacing Error sε for 300 MHz and 7 Linear Nodes
Antenna Array for 1000 Monte Carlo Runs as a Function of the Number
of Nodes in the Sensor Field..47

Figure 28. Average Total Error tε for 300 MHz and 7 Nodes Antenna Array for 1000
Monte Carlo Runs as a Function of the Number of Nodes in the Sensor
Field ...47

Figure 29. Average Beampattern for Uniform and Approximately Linear 7 Elements
Array at 300 MHz for 300 Nodes for 1000 Monte Carlo Runs49

Figure 30. Average Beampattern for Uniform and Approximately Linear 7 Elements
Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs49

Figure 31. Average Beampattern for Uniform and Approximately Linear 7 Elements
Array at 300 MHz for 1000 Nodes for 1000 Monte Carlo Runs50

Figure 32. Average Perpendicular Distance Error pε for 300 MHz and 9 Nodes
Linear Antenna Array for 1000 Monte Carlo Runs as a Function of the
Number of Nodes in the Sensor Field..51

Figure 33. Average Inter-node Spacing Error sε for 300 MHz and 9 Nodes Linear
Antenna Array for 1000 Monte Carlo Runs as a Function of the Number
of Nodes in the Sensor Field..52

Figure 34. Average Total Error tε for 300 MHz and 9 Nodes Linear Antenna Array
for 1000 Monte Carlo Runs as a Function of the Number of Nodes in the
Sensor Field ...52

Figure 35. Average Beampattern for Uniform and Approximately Linear 9 Elements
Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs53

Figure 36. Average Perpendicular Distance Error pε for 900 MHz and 7 Nodes
Linear Antenna Array for 1000 Monte Carlo Runs as a Function of the
Number of Nodes in the Sensor Field..54

Figure 37. Average Inter-node Spacing sε Error for 900 MHz and 7 Nodes Antenna
Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field ...55

Figure 38. Average Total Error tε for 900 MHz and 7 Nodes Antenna Array for 1000
Monte Carlo Runs as a Function of the Number of Nodes in the Sensor
Field ...55

Figure 39. Average Beampattern for Uniform and Approximately Linear 7 Elements
Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs56

Figure 40. Average Perpendicular Distance Error pε for 900 MHz and 9 Nodes
Linear Antenna Array for 1000 Monte Carlo Runs as a Function of the
Number of Nodes in the Sensor Field..57

 xi

Figure 41. Average Inter-node Spacing Error sε for 900 MHz and 9 Nodes Linear
Antenna Array for 1000 Monte Carlo Runs as a Function of the Number
of Nodes in the Sensor Field..58

Figure 42. Average Total Error tε for 900 MHz and 9 Nodes Linear Antenna Array
for 1000 Monte Carlo Runs as a Function of the Number of Nodes in the
Sensor Field ...58

Figure 43. Average Beampattern for Uniform and Approximately Linear 9 Elements
Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs59

Figure 44. Average Total Error tε for 300 MHz and 3 3× Nodes Planar Antenna
Array for 100 Monte Carlo Runs as a Function of the Number of Nodes in
the Sensor Field..60

Figure 45. Average Beampattern for 3 3× Uniformly Excited Planar Array at 300
MHz for 300 Nodes for 100 Monte Carlo Runs ..61

Figure 46. Average Beampattern for 3 3× Uniformly Excited Planar Array at 300
MHz for 800 Nodes for 100 Monte Carlo Runs ..62

Figure 47. Average Total Error tε for 300 MHz and 4 4× Nodes Planar Antenna
Array for 100 Monte Carlo Runs as a Function of the Number of Nodes in
the Sensor Field..63

Figure 48. Average Beampattern for 4 4× Uniformly Excited Planar Array at 300
MHz for 300 Nodes for 100 Monte Carlo Runs ..64

Figure 49. Average Beampattern for 4 4× Uniformly Excited Planar Array at 300
MHz for 800 Nodes for 100 Monte Carlo Runs ..64

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Density in the Sensor Field and Number of Nodes in a Cluster in a
210 10m× field..42

Table 2. Simulation Input Data for Linear Array Formation...45
Table 3. Simulation Parameters used for Planar Antenna Array Formation60

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my utmost gratitude to Professor Murali Tummala, CDR

T. Owens Walker III and Professor John McEachen of Naval Postgraduate School,

Monterey, California for their guidance and contribution to the successful completion of

this thesis.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

A wireless sensor network (WSN) consists of large number of small sensor nodes

that are deployed over an area in order to collect information. The military applications

that can be used include monitoring of biological, nuclear, chemical weapons, terrorist

attacks actions and reconnaissance. The information collected by the sensor nodes must

be transferred to an analysis center for further investigation and decision-making. The

sensor nodes, due to their limited power capabilities, have limited transmission range. By

providing distributed power usage across the network, the nodes can coordinate their

transmissions through beamforming and increase the transmission range. The beam of the

network is coordinated with an unmanned aerial vehicle (UAV), and the data collected by

the sensor nodes are transmitted to the UAV.

The objective of this thesis was to select appropriate nodes in a randomly

deployed sensor field to form a linear or planar array for beamforming. For the WSN to

perform distributed beamforming and information transmission, a suitable subgroup of

nodes must be selected from the cluster. The subgroup of nodes selected should satisfy

specific criteria in inter-node spacing and linearity. Multiple methods for both linear and

planar array formation were proposed.

For the linear array formation, we presented three methods: iterative, concurrent

and line fitting approach; and for the planar array formation, two methods: concurrent

and line fitting. The iterative approach begins with three nodes and then expands to the

desired number of nodes of the array. The concurrent approach is a technique based on

the iterative approach and the line fitting approach is based on the solutions found by

constructing and rotating a line obtained based on least squares line fitting in a cluster.

Expanding the concurrent and the line fitting approaches, we proposed two methods for

planar array formation.

To evaluate the performance of each method, we introduce a set of metrics used

for calculating the errors of the array formed. For the linear array, we proposed three

 xviii

error metrics: perpendicular distance error, inter-node spacing error and total error; and

for the planar array, we used one error metric: total error.

A simulation model was developed and implemented in MATLAB with multiple

node densities in the sensor field, communications range of each node and

communication frequencies as parameters. The array performance was evaluated using

the defined error metrics.

Results showed that the proposed methods demonstrate an improvement in

linearity in the construction of a linear array when compared with existing techniques.

The density of nodes in the sensor field plays a significant role in reducing the error

metrics in both linear and planar arrays. The average error metrics in the construction of

the linear arrays decreased as the density of nodes increased for all simulations.

Additionally, for the same operating frequency, and as more nodes were added to the

array, the total error decreased slightly with density for the line fitting method.

The linear array formation is successfully extended to the planar array, which

demonstrated improved performance. The line fitting method is used in all cases and the

total error decreased when the node density in the area was increased.

1

I. INTRODUCTION

Over the years, wireless sensor nodes have developed into low cost, small size

devices with multiple capabilities. The vision is that thousands of these smart

microsensors can be deployed on a battlefield by an aircraft. After a self-configuration

process among the nodes, the wireless sensor network (WSN) will be capable of

collecting and analyzing the information throughout the network. The collected data will

be transmitted to end users located outside the network for further analysis and decision-

making.

Due to the limited power capabilities of each node, the transmission range will be

very small. Also, the nodes will be distributed in a non-friendly environment in terms of

the surface and obstacles, and therefore it is likely that the radio horizon of each node

will be limited. A new method is proposed by [1] and [2] to distribute power usage

across the sensor network, which enables a better and broader spread of energy

consumption among the nodes (see Figure 1).

Figure 1. Use of a UAV in distributing power usage of the sensor network (From

Ref.[1])

In distributing the power usage of the sensor network, nodes organize into a

subgroup (known as a transmit cluster), coordinate their transmissions and form a beam,

which has the effect of increasing transmission range. The beam is then aligned with the

receiver of an unmanned aerial vehicle (UAV), which flies above the network according

2

to a pre-determined search plan, and the information of the network is relayed to the

command and control point as depicted in Figure 2.

Transmit
Cluster

Figure 2. Transmit Cluster and Beamforming in WSN with Nodes Coordinating

Transmission (From Ref. [1])

A. THESIS OBJECTIVE
The objective of this thesis is to propose a method to find the best combination of

nodes for beamforming, given a random distribution in the sensor field. The method

should select a specific set of nodes from the field that closely approximates the best

possible array for beamforming. The nodes selected should be aligned as close as

possible to a linear array with inter-node distances of one-half a wavelength. The method

should be expandable to two dimensions for forming a planar array, which will improve

the beamforming gain.

A two part process in forming the most appropriate arrays of nodes is proposed in

this work. The first part consists of a concurrent and a line fitting approach based on least

squares regression method to construct a linear array. The purpose is to improve the

beamforming gain achieved compared to the iterative construction of an array as

presented in [1]. The second part involves expanding the array constructed using the line

fitting approach to a planar, two-dimensional array. Both linear and planar simulation

models have been developed in MATLAB and their results are compared.

B. RELATED WORK

A beamforming approach for distributed wireless sensor networks introduced by

Vincent et al. [1] assembles a subset of sensor nodes into a distributed array for

3

beamforming. A distributed array is constructed by specific nodes, and the data gathered

by the network are transmitted as a narrow beam toward an overhead UAV. The

performance of the technique used to construct the distributed array, referred to as

iterative approach, in [1] is compared to the line fitting approach proposed and developed

in this thesis (in chapter III).

Distributing power usage in wireless sensor networks for energy conservation is

presented by Vincent et al. in [1] and [3]. A method to reassign the transmit cluster that

forms (along with other nodes of the network) the distributed array is presented,

achieving three main goals. First, a broader spread of the energy consumption, second,

minimizing the energy expended in moving the cluster and, finally, reducing to the extent

practicable the time to bring the UAV and the sensor network’s beam into alignment.

Lee et al. [4] presents algorithms for forming specific geometric patterns with a

mobile wireless sensor network without the assistance of the user. The patterns presented

are a line, circle and regular polygon. The nodes forming the specific patterns do not

exchange information but are capable of mobility and are equipped with cameras on

board. These two characteristics can improve the ability to construct specific patterns of

nodes in the network but also require increased processing and moving capabilities.

These capabilities lead to an increased power consumption, which is not desired in a

sensor field covering a 24/7 military surveillance area.

Arrayed wireless sensor networks and the problem of forming an array is

presented by Elissaios et al. in [5]. Wireless arrays are the dynamic entities that are

formed by specific groups of nodes under specific rules. The main advantage for wireless

array, as described, is their capability to suppress interference, localize nodes and also act

as message forwarding agents. The method proposed focuses on the selection of nodes

for the formation of wireless arrays.

Lastly, collaborative beamforming for distributed wireless ad hoc sensor networks

is analyzed by Ochiai et al. in [6] using the theory of random arrays. It is shown that with

N sensor nodes uniformly distributed in an area, the directivity can approach ,N

provided that the nodes are located sparsely enough.

4

C. THESIS OUTLINE

The organization of the thesis is as follows. Chapter II introduces the wireless

sensor networks with respect to various architectures, standards in use, routing

techniques, positioning, and localization of nodes as well as an introduction to array

beamforming. Chapter III presents the proposed methods for the construction of linear

and planar arrays. Chapter IV presents the performance evaluation metrics and simulation

results of the constructed grids, for both the linear and planar arrays. Finally, in Chapter

V, the overall conclusions and the highlights of future work are discussed. The appendix

includes the MATLAB source code used in the simulation studies.

5

II. WIRELESS SENSOR NETWORKS AND BEAMFORMING

This chapter presents an overview of WSN, including definitions, characteristics,

limitations, architecture and clustering in WSN. Next, the method for distributing power

usage across a WSN, proposed by [1], is reviewed. The method suggests collaboration of

the nodes in the network and the use of a UAV as an intermediate for transferring the

information to an analysis center. Finally, distributed beamforming as performed by

wireless sensor nodes is discussed.

A. OVERVIEW OF WSN

WSNs are expected to have a tremendous impact in the near future both for

military and commercial applications. Sensor networks represent a significant

improvement over traditional sensors, networks and wireless communications. In this

section, we will present the basic definitions, characteristics and limitations in WSNs,

and we will address the most important design factors.

1. Definitions and Description

A WSN is a wireless network consisting of a large number of small-sized sensor

nodes with short range communication range, deployed either into the phenomenon of

interest or very close to it. The nodes are autonomous devices, which cooperate with each

other in transferring information and are spatially distributed in a sensor field.

The nodes consist of a small microprocessor, a battery, a radio transceiver and

one or more sensors in accordance with the specific sensing tasks that the network has to

accomplish. Sensors monitor physical, environmental or human actions, such as

temperature, pressure, motion, various gasses, and vibration. The sensor variety is only

limited by the node size and the capability of the network to process, transfer and analyze

the information within a reasonable time delay.

Applications of WSNs include military, environmental, acoustic, seismic, medical

monitoring, and also fire, motion, object detection. The WSN is distributed in the area

where it is assigned to monitor or detect a specific phenomenon.

6

2. Characteristics and Limitations

The main design characteristics of WSNs that affect their overall performance are

energy efficiency, data routing efficiency, fault tolerance, delay and throughput,

scalability, synchronization and localization.

Limitations of WSN include the size of the nodes, which should be kept as small

as possible, especially for military applications when monitoring an area. Size limits the

storage and memory capabilities of the nodes. The cost of sensor nodes is also a

limitation since the number of nodes in the field may range from hundreds to thousands.

Both size and cost of the nodes contribute to the major constraint in a WSN, which is

limited energy resources due to the limited battery life. Communication range is affected

and limited due to this as well.

The nodes have to communicate and participate in the sensing task in an energy

efficient manner with low power consumption for the network to be deployed and work

effectively. The information needs to be routed with the following constraints in mind:

power consumption for a single packet, reliability and quality of the network, protocol

efficiency depending on the application, number of hops among source and nodes, time

required for the communication, and need for adaptation to the environment and to

specific network conditions.

In WSNs, routing is one of the most significant functions and needs to be

designed efficiently. Routing protocols that meet the needs of most of the criteria above

can be classified as either proactive or reactive routing protocols [7]. In the design of a

WSN, the selection of a suitable routing protocol is based on the specific purpose that the

network has to accomplish.

a. Energy Efficiency
Energy efficiency is another major concern in the performance of WSNs.

Since each node can only be equipped with a limited power source (typically less than 0.5

Ah, 1.2 V) [8], the power must be well managed among communication and computation

processes. The node’s lifetime depends on the battery lifetime, excluding manufacture or

physical malfunctions.

7

Thus, power conservation and management should be thoroughly

addressed when designing a WSN. The power consumption can be divided into three

categories: sensing, data processing, and data communication [8]. Among the three, data

communication has the highest percentage of power consumption. Also, while the first

two are determined when designing the hardware of the node, the communication power

consumption is highly dependent on the specific conditions of the environment (i.e.,

positioning, location, etc.) and the transmission medium (i.e., weather conditions) which

cannot be accurately predetermined.

b. Density
The number of the sensor nodes in the network field depends on the

specific application for which the WSN is deployed. The density can vary from a few

nodes to hundreds or thousands in a region. The density µ can be calculated as

2

() N RR
A
πµ = , (1)

where N is the number of nodes in a region of area A and R is the radio transmission

range [9]. So, ()Rµ gives the number of nodes within the transmission radius of each

node in region A .

3. Architecture and Clustering

Flat and tiered are the two main architectures that exist for wireless sensor

networks. In flat sensor networks, the nodes are homogenous in functionality and

capabilities while tiered sensor networks have the basic view of a pyramid as in Figure 3.

In a tiered network, some nodes may have more capabilities and functionality than others.

The higher nodes in the hierarchy provide services to those below. For large sensor

networks to be able to function correctly, it has been suggested that clustering is required

[10]. The main categories of tiered sensor networks are: geographical, information, and

security clustering [6].

8

Figure 3. Tiered Architecture in Low Rate Wireless Personal Area Networks (LR-

WPAN) (from [11])

This thesis is focused on a flat network of homogeneous nodes that organize

themselves into clusters based on certain conditions, depending on the application. Each

cluster will select a single node as a coordinator or clusterhead (CH).

The CH, in our study, will have increased responsibilities but not increased

physical capabilities and will be charged with managing the resources within the cluster

as well as maintaining communication with neighboring clusters. The selected CH may

be any of the nodes within the network and the selection is based only on the sensor field

local density criteria (i.e., different areas (spots) in the sensor field would have different

density due to random distribution of nodes). The basic mode of organizing the sensor

network in this task is the geographical clustering in which the criterion for selecting the

cluster is based on geographical proximity of the neighbor nodes.

The communication distance for each node is proportional to the output power; in

other words, the minimum output power required to transmit a signal over a distance d is

proportional to nd , where 2 4n≤ < (n is closer to 4 for a low-lying antenna and near-

ground channels) [8], [12]. Since the nodes in a wireless sensor network are sensitive to

energy consumption, the communication range for each node will be low. In [8], it is

shown that the received power starts to drop with higher exponents at smaller distances

for low antenna heights.

For a sensor node, the communication range will be a circle with radius r . In this

area, the Signal to Noise and Interference ratio (SNIR) of the signal received by any node

9

should be above the receiver threshold. The receiver threshold depends only on the

manufacturing quality and characteristics of the node’s receiver. Keeping in mind that the

sensor nodes are made simply and inexpensively and also the limitations in the output

power of the transmitter, the communication range of a node should be considered low

for simulating realistic scenarios.

4. Deployment
The topology establishment of a WSN can be divided into three main phases [8]:

• Pre-deployment and deployment phase

• Post-deployment phase

• Redeployment of additional nodes phase

In the pre-deployment and deployment phase, the sensor nodes are deployed in

the field. This can be achieved by either positioning them one by one or by dropping

them from the air by a UAV, a helicopter or an aircraft.

In the second phase, right after deployment of the sensor nodes in the field, the

network has to organize itself according to the specific task to be performed. Any

topology changes in this phase are due to malfunctions, node position, communication

range capabilities and task details.

The last of the three deployment phases mentioned above is required in order to

maintain the initial node density in the field to replace the malfunctioning or failed nodes.

B. METHOD FOR DISTRIBUTING POWER USAGE ACROSS A WSN [1]
WSN are especially attractive for military applications because they provide

unattended surveillance of the deployed area. A WSN can be deployed into a hostile

environment and gather information, replacing a vulnerable group of soldiers. No human

needs to be exposed to the threat (e.g., into a chemically effected environment). The

nodes, instead, can gather all the information needed and transmit them to a distributed

analysis center.

10

Each node, though, has limited transmission power, so the transmission distance

is also limited. Other factors that may limit the transmission distance are the surface

terrain or the presence of obstacles. By combining the transmissions of a subgroup of

nodes through beamforming, the transmission distance can be significantly increased.

This method of distributing the power usage of the WSN addresses the transmission of

the data over larger distances through efficient management of the nodes’ available

power in the absence of an absolute positioning system.

Without GPS, the nodes cannot determine their absolute position and must rely on

inter-node distances. In [1], to distribute power usage across a WSN it is assumed that

these distances between nodes are known. The network, given the inter-node distances in

the cluster, is capable in forming an array as will be described in Chapter III. The

additional task is that the network will have to determine all of inter-node distances

among the nodes that are in communication distance of each other. The inter-node

distance can be calculated by measuring propagation delay of radio signals among the

nodes.

1. Tasks Performed in Post Deployment Phase of a Distributing Power
Usage WSN

The second phase or post-deployment phase is when the network must perform its

functions which, in our case, are the following:

• An initial CH must be assigned according to an algorithm.

• Each node has to determine its distance among other neighbor nodes.

• Nodes are organized into clusters, and selected nodes must form a specific

array pattern (one or two-dimensional array).

• Data are transmitted outside the network by coordinating the transmission

and forming a beam.

In order for the sensor network field to be able to find its CH, a beacon message is

sent from every node after the initial deployment. Each node transmits a beacon message,

and the message is received by its neighbors. Additionally, each node receives its

11

neighbor’s messages. For example node i with iN neighbors receives iN beacon

messages. The node with the most neighbors in its communication distance is chosen to

be the CH.

After determining the CH in a deployment area, the information gathered from the

sensors in the network needs to be transferred to a distributed analysis center. This

analysis center is assumed to be away from the hostile environment where the network

has been deployed. It may be a secure military base hundreds of miles away for safety

purposes. The basic objective is the fast and reliable transfer of the information from the

sensor network into a secure distributed center [1] for analysis purposes.

To accomplish this, a UAV is flown above the wireless sensor nodes for a limited

time period, long enough for the network to transmit the information collected. Using a

subgroup of nodes that belong to the cluster, a transmit cluster [1], which is able to

transmit the information to the UAV, is formed (see Figure 2). The information gathered

in the WSN is transmitted to the UAV by the participation of the specified nodes in the

transmit cluster, which coordinate their transmissions in order to form a beam. The beam

of the network is engaged and synchronized with the UAV, and the transmission of the

data initializes. The entire process does not include any human interaction until the data

is received by the distributed analysis center. The UAV serving as an aerial relay between

the WSN and the analysis center is shown in Figure 1.

Because of the limited on duty time of the UAV in the hostile environment, the

transmission from the sensor network needs to be fast and reliable. The signals

transmitted by the subset of nodes to the UAV are identical to the signals used for inter-

node communication except for pre-calculated phases and amplitude offsets needed to

perform the beamforming. The theoretical gain achieved after beamforming is

proportional to the square of the number of participating nodes (2 whereN N∝ is the

number of participating nodes) [1],[13]. For a fixed Signal to Noise Ratio (SNR) for the

communication link between the network and the UAV, the more nodes participating in

the array formation, the less power is required and the better is the beamforming gain

achieved. However, even for a large N, the transmission of data between the sensor

12

network and the UAV is energy consuming. Thus, after a certain time, a change in the

specified CH and subgroup of nodes may be required.

After entering the sensor network area, the UAV has to search for the sensor

network beam. Several methods could be used for fast engagement and synchronization

of the UAV. For the alignment of the beam towards the UAV, two search plans exist, the

progressive search and the random search. These techniques are widely used in

antisubmarine warfare for a uniform search in an area for a stationary target [14]. For a

random search, it is proven that, on average, we cover the entire area before detecting the

target, but also the probability of detection is never assured. In the progressive search, we

expect to cover only half the area before detecting the target. However, assuming

independent segments of the search is not realistic. The probability of detection in any

given minute depends on whether or not we detected the target during the previous

minute [3] [14].

C. BEAMFORMING

In the post deployment phase of a WSN, a method as presented above, for

distributing the power usage of the sensor network could be achieved by combining the

transmission of selected nodes of a subgroup. Since each node has an omni-directional

antenna and limited transmission capabilities, only by combining the transmission of

multiple nodes together can we achieve greater transmission distances. The selected

nodes would coordinate their transmissions by transmitting the same signal with

calculated phase and amplitude offsets [1]. The electromagnetic waves will interfere and

the total radiated power would be focused in a predetermined direction (e.g., UAV). The

concentrated power in the preferred direction is the gain G and the participating nodes

for achieving this gain are the array elements. As more nodes participate in the array, we

are able to achieve a higher gain. Two array geometries are typically considered: linear

(one dimensional) and planar (two dimensional) [3], [15].

13

1. Linear Array Beamforming

In this section, we will study the beamforming achieved by M omni-directional

elements. The M elements are assumed to be in a line with equal spacing among them.

We assume that a source exists in the far field at an angle αθ with respect to x (array)

axis. The source is transmitting a signal ()s t modulating a complex carrier cj te ω and we

assume that the arriving wavefront is planar [15] as shown in Figure 4.

αθ

2
cosx

αθ

Figure 4. An 1M × Uniform Linear Antenna Array

The thm element receives the signal

 cos() m
m a

xt
c

αθθ = (2)

seconds before it is received by the first element at the origin, where c is the speed of

light and mx is the distance from the origin to the thm element. The sum of the antenna

outputs is the array factor (spatial response ()F θ) of the array

2 cos()()

1 1
() or () m a

c m a

M M j xj t
a a

m m
F e F e

π θω θ λθ θ
= =

= =∑ ∑ (3)

where λ is the wavelength of the source.

If we desire to point the radiated power in a specific direction, we have to

multiply the output of each array element by a complex weight, 0()I c mj t
m e ω θ− , where θ0 is

the angle of arrival measured from the array axis. The main lobe of the radiation pattern

14

is designed to give the maximum value of ()aF θ at 0aθ θ= . The squared magnitude of

the radiation power pattern is given by

 2() ()a aG k Fθ θ= , (4)

where k is a proportionality constant [15].

2. Planar Array Beamforming

Figure 5 shows an M N× planar array located in the far field of a point source

[15]. The array factor in the two-dimensional case is given by

2 (sin cos sin cos)

1
(,) n n

M j x y

m
F e

π θ φ θ φ
λθ φ

+

=

=∑ , (5)

where (,)n nx y are the coordinates of the thn point, φ is the azimuth angle with respect to

axisx − , θ is the elevation angle with respect to axisz − and the array is assumed to be

uniformly excited.

Figure 5. An M N× Antenna Array of Omni-directional Radiating Elements [15]

D. SUMMARY

In this chapter, we presented the main definitions and characteristics of a WSN

and also addressed the constraints in design and deployment. Next, we described a

method for distributing power usage across the WSN in a military environment as

15

presented by [1] using a UAV for transferring the data of the network to an outlying

analysis center. Finally, the basics of beamforming in one- and two-dimensions were

briefly presented.

The next chapter will present the proposed methods for forming these linear and

planar arrays in a WSN.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. PROPOSED METHODS FOR BEAMFORMING ARRAY
FORMATION IN WIRELESS SENSOR NETWORKS

This chapter presents the proposed array formation techniques. We describe the

techniques used by the network to organize the nodes of a cluster through inter-node

distance estimation to form linear and planar arrays to achieve increased gain.

To perform beamforming, as described in Chapter II, the antenna elements must

be in specific positions. On the other hand, the nodes are randomly deployed in the WSN.

Therefore, the network should be capable of self determining which nodes would be

selected to participate in this group.

For the WSN to perform distributed beamforming and information transmission, a

suitable subgroup of nodes must be selected from the cluster. For linear array formation,

we present three methods: iterative, concurrent and line fitting and for planar array

formation, two methods: concurrent and line fitting. All algorithms include a CH in the

subgroup of nodes that perform the beamforming. The parameters that affect the array

formation and the shapes that the nodes (as array elements) form will be analyzed.

In a distributed wireless sensor network, the nodes are able to determine their

position if a subset of nodes initially has knowledge of their absolute geographical

coordinates. The idea is that neighboring nodes measure their distances to the beacon

nodes, and transmit their positions to their neighbors [3]. New nodes then become beacon

nodes and transmit their position in an iterative fashion. Applications that depend on

precise positioning information cannot be relied upon to guarantee performance in critical

military scenarios due to the error introduced in positioning information. In the

techniques presented, the network does not need to construct an absolute coordination

system for each node prior to forming an array. The only knowledge that each node is

assumed to have is the distance to all of its neighbors within the communication radius

[3].

18

A. LINEAR ARRAY FORMATION

In linear array formation, three approaches are presented: iterative, concurrent and

line fitting.

The iterative approach is a technique proposed by [1], which initially begins with

three nodes and then expands to the desired number of nodes of the array. The concurrent

approach is a technique based on the iterative approach and the line fitting approach is

based on the solutions found by constructing and rotating a line obtained based on least

squares line fitting in a cluster.

For our case, in order to perform beamforming (as described in the previous

chapter), we desire the inter-node distance to be / 2,λ where λ is the wavelength

(/)c fλ = . Two criteria need to be satisfied: first, the nodes need to be in a line and,

second, the spacing between adjacent nodes needs to be / 2λ .

1. Linear Array Formation using the Iterative Approach
In this procedure, as suggested in [3], the nodes are examined in groups of three.

Consider three nodes , andS i j (S being the CH) and relative distances among them

(,), (,) and (,)d S i d i j d S j . As shown in Figure 6, the three nodes are not aware of their

absolute positions (meaning, they do not know whether they are located in a plane as in

Figure 6 (a) or Figure 6 (b)). However, the nodes do know the distances among

themselves and to all of those nodes that they can communicate with.

Figure 6. Relative Orientation of the Nodes [3]

19

To select the most linear shape among the three nodes, an algorithm is used and

described in [3] that defines two constraints that must be met for a linear array. First, the

distances among the closest nodes need to be equal. For our example in Figure 6,

 (,) (,)d S i d i j= (6)

which leads to the following objective:

 1 min{| (,) (,) |}d S i d i jε = − . (7)

Second, the sum of the distances of the closest nodes (inter-node spacing distance) must

be equal to the distance between the first and the last node. Again for our example,

 (,) (,) (,)d S i d i j d S j+ = (8)

which leads to the following objective:

 2 min{| (,) (,) (,) |}d S i d i j d S jε = + − (9)

Combining (7) and (9) and adding appropriately chosen weights, andα β , gives

 3 min{ (,) (,) (,) (,) (,)}d S i d i j d S j d S i d i jε α β= + − + − . (10)

By minimizing (10), best three nodes along a line with approximately equal distances

among them are chosen.

In order to satisfy the criterion that the spacing between adjacent nodes be

/ 2λ , we minimize (10) to get

 4 min{ (,) (,) (| (,) | | (,) |)}
2 2

d S i d i j d S i d i jλ λε α λ β= + − + − + − (11)

Using the above, the first three nodes are chosen with the best linear

characteristics and with an approximate inter-node spacing of / 2λ . Next, a fourth node

is iteratively added using the technique described above for three nodes. The last two

nodes in one end or the other of the first three nodes are used as reference points to

evaluate the new node. Finally, by proceeding iteratively, we expand the array to the total

desired number of nodes.

20

2. Linear Array Formation using the Concurrent Approach

Based on the previously described technique, we now propose a new solution to

finding nodes placed in a linear shape. The solution solves the problem in a concurrent

manner for the desired number of nodes and also takes into account the desired inter-node

spacing.

For solving the problem concurrently, we assume that from a uniformly

distributed random sensor field, we want to select the nodes that are positioned in as

straight a line as possible. In Figure 7, we present two examples of nodes that are not

suitable for beamforming. In Figure 7 (a), the nodes are not in a straight line, and, in

Figure 7 (b), the nodes are not equally spaced. We need to find a group of nodes that

meet both criteria.

(,)d S i

(,)d i j (,)d j k
(,)d k l

(,)d S k

S

S

i

i

j

j

k

k

l

l

(,)d k l

(,)d S i

(,)d i j (,)d j k (,)d k l

Figure 7. Five Nodes Not Suitable for Beamforming

Marked in red (S) in Figure 7, the CH, as in the previous method, must be

included in the group. The remaining four nodes are , , andi j k l . To meet the first

criterion (i.e., the nodes are in a line), we minimize the equation

1

| (,) (,) (,) (,) (,) |C d S i d i j d j k d k l d S lε = + + + − . (12)

By minimizing (12), we can be assured that the nodes selected are those that are

positioned as close as possible on a straight line. By this, we are trying to eliminate the

situation where the nodes are positioned as in Figure 7 (a).

Our algorithm must also choose the nodes that are equally spaced with distance

/ 2λ , i.e., we desire

 (,) , (,) , (,) , (,) and (,) 4
2 2 2 2 2

d S i d i j d j k d k l d S lλ λ λ λ λ
= = = = = × . (13)

21

This leads to a minimization of

| (,) | | (,) | | (,) | | (,) | | (,) 4 |
2 2 2 2 2

d S i d i j d j k d k l d S lλ λ λ λ λ
− = − = − = − = − × (14)

Finally, combining the elements of (14), we need to minimumize

2

{| (,) | | (,) | | (,) |

| (,) | | (,) 4 |}

2 2 2

2 2

C d S i d i j d j k

d k l d S l

λ λ λε

λ λ

= − + − + − +

− + − ×

=
 (15)

Combining (12) and (15) and adding appropriate weights, we have

{| (,) (,) (,) (,) (,) |}

{| (,) | | (,) | | (,) | (,) | | (,) 4 |}
2 2 2 2 2

C d S i d i j d j k d k l d S l

d S i d i j d j k d k l d S l

ε α
λ λ λ λ λβ

= + + + − +

− + − + − + − + − ×
 (16)

At last, we have achieved both criteria (i.e., positioning five nodes as closely as possible

in a straight line with inter-node spacing among adjacent nodes at / 2λ). The “best case”

theoretical positioning result is shown in Figure 8.

S i j k l

(,)
2

d S i λ
= (,)

2
d i j λ

= (,)
2

d j k λ
= (,)

2
d k l λ

=

(,) 4
2

d S l λ
= ×

Figure 8. Five Node Ideal Linear Array with Inter-node spacing / 2λ Suitable for

Beamforming

The concurrent method described above solves for the formation of an array in a

one step process, which means that we solve the problem for the total desired number of

nodes in one step. If N nodes are needed to form the array, then the solution is solved

initially for N nodes; in the iterative method, on the other hand, we initially solve for

three nodes and then expand to N. This approach would examine all the possible

combinations within the cluster and the solution that minimizes (16) would be selected.

22

3. Linear Array Formation using the Least Squares Line Fitting
Approach

The least squares fitting technique (regression line) is a statistical procedure for

finding the best linear fit to a set of points by minimizing the sum of the squares of

differences between the points generated by the function and corresponding points in the

data (residuals). The linear regression function which provides the linear solution is given

by

2 1()f x c x c= + (17)

where 2c is the slope of the line and 1c the offset. The node positions and the linear
regression solution are shown in Figure 9.

Figure 9. The Least Squares Line Fitting Solution

The least squares line fitting is applied to all the nodes that are within the

communication distance of the CH (i.e., cluster). The result is Line γ shown in Figure 10.

The CH does not necessarily lie on the line, but it should clearly be very close to it since

it is typically positioned near the center of the cluster.

Line γ

CH
2

4

3

5

1

Figure 10. Least Squares Line Fitting applied to Cluster

23

The heavy dot numbered 1 on Line γ in Figure 10 is the orthogonal projection of

the CH onto the line (i.e., intersection of the line from CH perpendicular to Line γ). The

heavy dots numbered 2 and 3 are spaced exactly / 2λ from the first on Line γ and so on.

These dots represent the ideal node positions along the Line γ and their inter-node

spacing can be summarized as

 1 2 2 4 1 3 3 5(,) (,) (,) (,)
2

d s s d s s d s s d s s λ
= = = = . (18)

where 1 2(,)d s s is the distance between Dot 1 and Dot 2 along the line.

In order to have a linear array consisting of nodes equally spaced by / 2λ , the

theoretically perfect solution would be the dots on the least squares fitted line. In practice,

in a randomly deployed (uniformly distributed) sensor network field, we select the sensor

nodes that have the minimum distance from the dots. The solution is shown in the Figure

11, where the nodes marked in green are selected as the closest nodes to Dots 2 to 5. The

CH and Nodes 2-5 form the linear array for beamforming.

Figure 11. Formation of the Linear Array using Least Squares Error Fitting

In an attempt to form the best possible linear array centered around the CH, (the

least squares fitted) Line γ is rotated in counter clockwise direction by an angle φ as

shown in Figure 12. After the rotation, again four ideal node locations with inter-node

distances of / 2λ are marked as heavy dots along the rotated line. Followed by that, four

sensor nodes closest to the new ideal locations (dots) are selected (marked in blue). The

24

two solutions (green and blue nodes) are compared (according to metrics described in the

next chapter) and the one with the least error is chosen to form the array.

The least squares line fitting and iterative approaches are simulated in Matlab.

Figure 13 shows the results of simulation for a 7-node array. The green lines represent

two solutions for the least squares approach after a rotation of 090 degrees and the red

line represents the solution of the iterative method. Both methods are implemented in a

field of 10 10× meters for 500 nodes. Only the nodes in the communication radius of the

CH are shown.

While the least squares line fitting is applied initially to the cluster area, an

alternative method would be to place a line randomly through the CH, and then rotate it

multiple times using the above process. The initial direction of the line applied to the

cluster does not effect the final solution. The number of the rotations depends on the

density of the nodes and the exact number would need to be found heuristically. In a high

density field, more rotations would be required in order to examine all the possible

solutions.

Figure 12. Formation of Linear Array using Least Squares Line Fitting after Rotation by

an Angle φ

25

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 13. Comparison of the Line Fitting (green line) Solution with the Iterative

Construction (red line) in MATLAB in a sensor field of size 210 10 m× with 500
nodes

B. PLANAR ARRAY FORMATION

Expanding the techniques described for the formation of a linear array, we can

form an array in two dimensions (i.e., planar array). Again, the larger the size of the array

with inter-node spacings based on / 2λ , the better is the beamforming gain. Here, planar

array on a square grid (i.e., 3 3× , 4 4× , 5 5× , etc.) are considered.

Both the concurrent and the line fitting approach are discussed below for planar

array formation.

1. Planar Array Formation using Concurrent Approach
Based on the concurrent technique presented in Section A, we expand it to the

construction of a planar array (in two dimensions) for 9 nodes. The concept is to use the

26

distance-based equations to describe the shape of the structure required. For increased

beamforming gain, we require more nodes to participate in the array as elements.

For constructing a planar array with 9 nodes we require them to be positioned as

shown in Figure 14 (ideal square shape). The CH may be in one of three possible

positions (marked with red filled circle).

(,)
2

d q r
λ

= (,)
2

d p q
λ

=

(
,

)
2

d
l

p
λ

=

(
,

)
2

d
j

l
λ

=

(
,

)
2

d
n

r
λ

=
(

,
)

2
d

S
n

λ
=

(
,

)
2

d
m

q
λ

=

(,)
2

d m n
λ

= (,)
2

d l m
λ

=

(,)
2

d S i
λ

= (,)
2

d i j
λ

=

(,) 2

5

d S l
λ
=

×

(,) 2

2

d
i l

λ
=
×

(,)
2

d m j
λ

=

(,)
2

d q r
λ

=

(
,

)
2

d
l

p
λ

=

(,)
2

d S l
λ

=

(
,

)
2

d
n

r
λ

=
(

,
)

2
d

i
n

λ
=

(
,

)
2

d
S

q
λ

=
(,)

2
d m i

λ
=

(,)
2

d q p
λ

=

(,)
2

d S n
λ

=

(
,) 2

2

d
m

l

λ
=
×

(,) 2

5

d i l
λ
=

×

(
,

)
2

d
l

p
λ

=
(

,
)

2
d

j
l

λ
=

(,)
2

d q p
λ

=(,)
2

d q r
λ

=

(
,

)
2

d
n

r
λ

=
(

,
)

2
d

i
n

λ
=

(,)
2

d l m
λ

=(,)
2

d m n
λ

=

(,)
2

d S j
λ

=(,)
2

d S i
λ

=

(
,) 2

2

d
S

l

λ
=
×

(,) 2

5

d i l
λ
=

×

(
,

)
2

d
m

q
λ

=

Figure 14. Inter-node distances of Planar Array: Possible Positions of the CH in red and
the Participating Nodes are hollow circles

Any other combination in the construction of a 3 3× planar array would be a

mirror image of one of the arrays in Figure 14. This is shown in Figure 15, where the

solution marked with blue nodes has three mirror images (marked with green) which

equate to the same solution set in the field. For each of the three possibilities, we

calculate the error metric and choose the one with the least error.

27

r

S

lmn

pq

i j

Figure 15. Solution and mirror images of the solution in the field

To form a planar array, we have to find the inter-node distances for each node

pair. In the case of the CH in Figure 14 (a), the various distances for a perfect planar

array are as shown in the Figure 16.

(
,

)

2

2

d
S

m

λ
=

×

(
,

)

5
2

d
S

q

λ

=
×

(
,

)

2

d
S

p
λ=
×

(,)

5

2
d S l

λ
=

×

(,)d S j λ=

(,)
2

d S λι =

(
,

)
2

d
S

n
λ

=

(
,

)
d

S
r

λ
=

S
j

i

ll
n

r q p

Figure 16. Node Distances from the CH in a 3 3× Array

28

Solving only for inter-node distances between the CH and all other nodes, we

have the following equation to be minimized

| (,) | | (,) | | (,) 5 | | (,) 2 |

2 2 2

| (,) | | (,) 2 | | (,) 5 | | (,) |
2 2

CH d S i d S j d S l d S m

d S n d S p d S q d S r

λ λ λε λ

λ λλ λ

= − + − + − × + − × +

− + − × + − × + −
 (19)

Each factor of the above equation must be minimized; the sum of all factors must be

optimized by again solving for the minimum.

Following the same procedure for the remaining nodes, we have

 min | |CH i j l m n p q rε ε ε ε ε ε ε ε ε ε= + + + + + + + + . (20)

where CHε is the inter-node error to be minimized for distances between CH and every

other node in the array, iε is likewise the inter-node error to be minimized with Node i

as the anchor node, and so on. Combining all the inter-node error returns, we have the

total inter-node error to be minimized as given by

| (,) | | (,) | | (,) 5 | | (,) 2 |
2 2 2

| (,) | | (,) 2 | | (,) 5 | | (,) |
2 2

| (,) | | (,) 2 | | (,) | | (,) 2 |
2 2 2 2

| (,) 5 | | (,) | | (,) 5 |
2 2

| (,

d S i d S j d S l d S m

d S n d S p d S q d S r

d i j d i l d i m d i n

d i p d i q d i r

d j l

λ λ λε λ

λ λλ λ

λ λ λ λ

λ λλ

= − + − + − × + − × +

− + − × + − × + − +

− + − × + − + − × +

− × + − + − × +

) | | (,) 2 | | (,) 5 | | (,) |
2 2 2

| (,) 5 | | (,) 2 | | (,) | | (,) |
2 2

| (,) | | (,) 2 | | (,) 5 |
2 2 2

| (,) | | (,) 2 | | (,) | | (,) 2 |
2 2 2 2

| (,) 5 |
2

d j m d j n d j p

d j q d j r d l m d l n

d l p d l q d l r

d m n d m p d m q d m r

d n p

λ λ λ λ

λ λλ λ

λ λ λ

λ λ λ λ

λ

− + − × + − × + − +

− × + − × + − + − +

− + − × + − × +

− + − × + − + − × +

− × | (,) 2 | | (,) |
2 2

| (,) | | (,) | | (,) |
2 2

d n q d n r

d p q d p r d q r

λ λ

λ λλ

+ − × + − +

− + − + −

 (21)

29

Equation (19) applies only to the geometry of Figure 14 (a) (where the CH is at

the South West corner of the array). For the other two geometries (CH in the center or

CH in the base), the equations for minimization can be formed in a similar fashion.

The solution to our problem would be the nodes that minimize (19). Theoretically, the

nodes that would provide this result would be positioned as in Figure 14 (a). This

approach would examine all the possible node arrangements within the cluster, and the

solution selected would be the one that best approximates the theoretical case.

2. Planar Array Formation using the Least Squares Line Fitting
Approach

In this approach, first, a least squares fitted line is formed for the nodes positioned

within the CH’s communication distance (i.e., the cluster) and is an extension of the

linear array construction using the least squares line fitting. Next, a set of lines (lines

1 2, , etcγ γ .), as needed, that are parallel to Line γ are obtained. These parallel lines, of

course, are spaced / 2λ distance apart.

Figure 17 (a) shows the nodes within the cluster and the least squares fitted line γ

as described in the previous section and the two parallel Lines 1 2andγ γ at a distance of

λ/2 on both sides. The heavy dots (marked with black) are the ideal node locations, which

are relative to the projection of the CH on Line γ and are exactly λ/2 distance apart.

Line γ Line γ

2Line γ 2Line γ

1Line γ 1Line γ

CH CH

Figure 17. Nodes in Cluster to form a 3 3× Planar Array: (a) Least Squares Fitted Lines

and Ideal Node Positions; (b) Selected Sensor Nodes that are Closest to the Ideal
Locations

30

To form the desired planar array, we select the nodes that are positioned closest to

the dots on Lines 1 2, andγ γ γ . A possible solution is illustrated as nodes marked with

green in Figure 17 (b).

Seeking another (possibly better) solution, we rotate the three parallel lines

counter clockwise by an angleϕ , which again is determined heuristically based on the

node density in the cluster (larger angles for smaller node density and smaller angles for

larger node density). The rotated lines and a possible solution are illustrated in Figure 18.

Taking a careful look at Figure 18 (b), we observe that only one different node is selected

when compared with the previous solution found in the Figure17 (b) above (the node in

the North West corner, numbered as 6, is different).

'Line γ

'
1Line γ

'
2Line γ

'
1Line γ

'Line γ

'
2Line γ

CH
CH

Figure 18. Fitted Lines Rotated by an Angle ϕ in the counter clockwise direction: (a)

Least Squares Fitted Lines and Ideal Node Positions; (b) Selected Sensor Nodes
that are Closest to the Ideal

After a heuristically-determined number of rotations, five in our simulations, the

best solution with the minimum error, in terms of distance from the edges, is selected.

These nodes will then be assigned to coordinate their transmissions to perform

beamforming and transmit the data to a distributed analysis center through the overhead

UAV.

C. SUMMARY

In this chapter, we proposed methods of forming linear and planar arrays in a

sensor field without the aid of GPS or other location knowledge. In the linear array

31

formation, we presented three methods: iterative, concurrent and line fitting approach.

Expanding the concurrent and the line fitting approaches, we proposed two approaches

for planar array formation.

 In the next chapter, we present the simulation results to evaluate the performance

of the array formation techniques.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

This chapter presents and evaluates the performance of the proposed approaches

for constructing an array in a WSN field. First, we present a set of performance

evaluation metrics used in the simulations. Next, the simulation model is discussed and,

finally, the simulations results for the proposed methods of Chapter III for the

construction of linear and planar arrays are presented. For the linear array, the results

presented are from the iterative and the line fitting approaches. For the planar array, the

results are presented for the line fitting approach.

A. PERFORMANCE EVALUATION METRICS
The results from the simulations must be analyzed to determine the effectiveness

of the approach in forming a linear array. The array that is constructed in the field must

be compared with an array that is perfectly linear with inter-node spacing of / 2λ . The

nodes that are in perfect linear positions and have interspacing distance of λ/2 would give

the highest gain.

To evaluate the performance of each method, we introduce a set of metrics used

for calculating the errors of the array formed. These metrics will be used to evaluate the

performance based on the simulation results. The three proposed error metrics are defined

as follows.

1. Perpendicular Distance, pε : a measurement of the perpendicular

distance of each node of the constructed array from the line with ideal node locations.

2. Inter-node Spacing Error, sε : a measurement of the difference in inter-

node spacing along the line between the orthogonal projection of the nodes and the ideal

positions at multiples of / 2λ .

3. Total Error, tε : a measurement of the Euclidean distance between the

nodes and the ideal positions on the line representing the perfect array

The remainder of this section describes the details of the calculation of these

metrics. All three metrics are used to evaluate the results from Matlab simulations for

34

linear array using the iterative and the line fitting methods. Before attempting to

determine the metrics, we need to determine a reference line. In the case of the least

squares line fitting approach, the reference line is the fitted line. For the iterative

approach, a line needs to be determined for computing the metrics.

1. Determination of the Reference Line

The reference line is obtained using the least squares regression approach for the

selected nodes. For example, Figure 20 illustrates a five-node array with a reference line.

The nodes of the constructed array introduce errors in both dimensions. The ideal

positions are assumed to lie on the line with inter-node distances of / 2λ .

Let S represent the set of ideal node positions along the reference line:

 { } {(,)}i i iS S x y= = (22)

and let 'S represent the actual node positions around the line defined as

 ' ' ' '{ } {(,)}i i iS S x y= = (23)

where all positions are relative.

35

2
λ

'
1S

4S
'
4S

(,)i i iS x y=

' ' '(,)i i iS x y=

2 1y c x c= +

'
3S

'
5S

5S

3S

2
λ

2
λ

2
λ

2S

'
2S

1S

Figure 19. Sensor Nodes and the Reference Line

Given the node position data ' '(,)i ix y for n nodes, a regression line using least

squares is obtained to represent the reference line. The Matlab function regress (,)X y is

used for this purpose, where y is a vector of the y-coordinate values

'
1
'
2

'

.

.

n

y

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (24)

and X is an 2n× matrix defined as

36

'
1
'
2

'

1

1
.
.
1 n

x

x
X

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (25)

and n is the number of nodes in the array.

The function solves the equation

 y Xc= (26)

where c is a 2 1× vector

 1

2

c
c

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (27)

with 2c representing the slope of the line and 1c the offset from the origin. The reference

line can be expressed as

 2 1y c x c= + . (28)

Without loss of generality, we can assume that the CH is located at the origin and that

1 0c = .

2. Perpendicular Distance Error Metric
The first error calculated, which gives an estimate of the achieved approximation

in linearity of the nodes in simulation, is the perpendicular distance of the nodes from the

reference line. Figure 21 illustrates the perpendicular distances.

The slope of the line perpendicular to the reference line is
2

1
c

− . For a given node

i , the intersection of the perpendicular line and the reference (,)
i ip px y is obtained by

solving the two line equations

 2 1y c x c= + (29)

 3
2

1y x c
c

= − + (30)

where 3c is the offset of the perpendicular line associated with node i . The set of these

intersections is { } {(,)}
i i ip p p pS S x y= = . The perpendicular distance is then given by [16]

37

 ' 2 ' 2() ()
i i ip i p i px x y yε = − + − . (31)

The average perpendicular error given by

1

1
i

n

p p
nn

ε ε
=

= ∑ (32)

is used as the metric to represent the perpendicular distance error. Even though this

approach provides a metric for comparing the different arrays, it does not give us any

information regarding the inter-node distances. To evaluate the inter-node spacing, we

introduce the second metric in the next section.

2
λ

'
1S

4S
'
4S

(,)i i iS x y=
' ' '(,)i i iS x y=

2pε

2 1y c x c= +

'
3S

'
5S

5S
5pε

4pε

3pε

1pε

3S

2
λ

2
λ

2
λ

2S

'
2S

1S

Figure 20. Perpendicular Distance Error Measurement

38

3. Inter node Spacing Error metric

The inter-node spacing between the successive ideal node positions along the

reference line is / 2λ . Figure 22 illustrates the spacing among the ideal nodes as well as

the spacing error (along the line) for the actual nodes.

CH

S3
'

S5
'

S4
'

S5

S4

S3

2 1y c x c= +

2
λ

5sε

4sε

3sε

2sε

'
2S

2S

2

'
pS

3

'
pS

4

'
pS

5

'
pS

Ideal Node Position,

Actual Node Position,

CH

' ' '(,)i i iS x y=

(,)i i iS x y=

2
λ

2
λ

2
λ

'
1S

1S

Figure 21. Internode Spacing Error between Ideal Node Positions and Perpedicular

Projections of the Actual Nodes along the Reference Line.

The inter-node spacing error for the thi node is given by

 2 2() ()
i i is i p i px x y yε = − + − (33)

and the internode spacing error metric represented by the average is given by

1

1
i

n

s s
nn

ε ε
=

= ∑ . (34)

39

The frequency and density that we use effect the inter-node spacing error. It

cannot be used to compare simulations where the frequency of operation is different.

4. Total Distance Error Metric

The total error for the thi node is calculated as

 ' 2 ' 2() ()
it i i i ix x y yε = − + − (35)

where (,)i ix y represents the ideal position of the thi node and ' '(,)i ix y represents the

actual position. Figure 23 illustrates the individual total errors. The total error metric tε is

the average of all the individual errors given by

1

1
i

n

t t
in

ε ε
=

= ∑ . (36)

2 1y c x c= +

'
5S

5S

'
4S

4S

2
λ

3S

'
3S

' ' '(,)i i iS x y=

'
2S

'S

2t
ε

5t
ε

4t
ε

3t
ε

iS
2

λ

2
λ

2
λ

2
λ

(,)i i iS x y=
1S

Figure 22. Total Error Calculation

40

5. Planar Distance Error

In the case of planar antenna array construction, the calculation of error in the

resulting array is performed by calculating the Euclidean distance between the ideal

position and the actual position of the node. The ideal positions of the nodes are on a

square grid as described in Chapter III.

Let 'S be the set of position of all nodes in the array
' ' '' { } {(,)}, 1, 2,..., and j=1, 2,...,ij i jS S x y i n n= = =

and let S be the set of the ideal node positions (on the grid)

{ } {(,)}, 1,2,..., and j=1,2,...,ij i iS S x y i n n= = =

The Euclidean distances between a node and idel position is given by

 ' 2 ' 2() ()ij i i j jx x y yε = − + − (37)

The Euclidean distance error for a 3 3× planar array is illustrated in Figure 23 as between

a node and the corresponding ideal position. The CH is aligned to the center of the array

and the ideal position and errors of the remaining eight nodes are calculated.

11S

13S
23S 33S

23S
22S21S

13S
12S

CH

'
11S '

12S '
13S

'
21S

'
22S

'
23S

'
33S'

23S'
13S

33ε

13ε
12ε

11ε

23ε21ε

13ε 23ε
(,)ij i iS x y=

' ' '(,)ij ij ijS x y=

Figure 23. Calculated Position Error for a Planar Antenna Array

The total error tε is the average of all the individual errors given by

 2
1 1

1 n n

t ij
i jn

ε ε
= =

= ∑∑ (38)

where the error corresponding to the CH (in Figure 24, 22ε) is zero.

41

B. SIMULATION MODEL

A simulation model was developed in MATLAB code to study and compare the

linear and planar array formation for multiple scenarios using different communication

frequencies, communication range and node densities. All simulations were performed in

an area of 210 10 meters× with communication ranges of 2 and 4 meters for both linear

and planar array formation. The linear array formation was simulated for 7 and 9 nodes

while the planar array was 3 3× and 4 4× . Node density ranged from 100 to 1500 and

frequencies of 300 MHz and 900 MHz were used in the simulations.

1. Inter-node Distance and Density in the Field

The / 2λ inter-node spacing distance we are trying to achieve between adjacent

nodes depends only on the communication frequency of the nodes. We have

2 2

cd
f

λ
= = (39)

where d is the inter-node spacing, c is the speed of light (83 10 m/s×), f is the

communicating frequency of the nodes (used to perform beamforming) and λ is the

effective wavelength. The appropriate inter-node spacing decreases as the communication

frequency of the nodes increases. The higher the frequency used for inter-node

communication purposes, and thus for beamforming purposes, the lower the inter-node

distance must be. This results in the need for higher density in the specified subgroup,

which is assigned to form the desired linear or planar array.

The density depends on the size of the field and the total number of the nodes that

we are capable of deploying in the area. Recall from (1) that the density of the nodes

would be higher if the number of nodes is relatively high and the sensor field is small.

The opposite would occur if the number of nodes is relatively low and the field is large.

The size of the field used to perform the simulations was 210 10 meters× , and

communication range of the nodes was chosen to be 2 meters for the 7-node array and 4

meters for the 9-node array case. This results in a field percentage of coverage for each

42

node of 2 2 2 2/ 2 /10 0.1256 or 12.56%r Aπ π= = of the whole sensor network area for the

2-meter communication distance and 2 2 2 2/ 4 /10 0.5024 or 50.24%r Aπ π= = for the 4-

meter case.

The number of nodes used in the simulation ranged from 100 to 1500 in steps of

100 for each simulation. A uniform distribution was assumed within the field. As the

number of nodes in the area increases, the density also increases. This resultant node

density within the cluster is shown in Table 1. This is the number of nodes in the

transmission radius of the CH (i.e., cluster). As we can see in Table 1, using (1), the

number of nodes within the communication radius of the CH varies from approximately

12 to 180 nodes for communication radius 2 meters and 50 to 753 for communication

radius 4 meters.

Number of
Nodes
(210×)

Average cluster size
(2m comm. radius)

Average cluster size
(4m comm. radius)

1 12.56 50.24

2 25.12 100.48

3 37.68 150.72

4 50.24 200.96

5 62.80 251.2

6 75.36 301.44

7 87.92 351.68

8 100.48 401.92

9 113.04 452.16

10 125.60 502.4

11 138.16 552.64

12 150.72 602.88

13 163.28 653.12

14 175.84 703.36

15 188.40 753.6
Table 1. Density in the Sensor Field and Number of Nodes in a Cluster in a

210 10m× field

43

Table 1 is graphically represented in Figure 26, where we can see how the number

of the nodes within a cluster increases with the total number of nodes in the sensor field

of 210 10 meters× for CH communication radii of 2 and 4 meters.

0 500 1000 1500
0

100

200

300

400

500

600

700

800

Total Number of Nodes

A
ve

ra
ge

 N
um

be
r o

f N
od

es
 in

 a
 C

lu
ste

r

2 m radius
4 m radius

Figure 24. Number of Nodes within a Cluster for 2m and 4 m Communication Distance

for a 210 10m× sensor field

2. Simulation Model
A simulation model was developed in MATLAB to evaluate the proposed linear

and planar antenna array formation methods in a wireless sensor field. Figure 25 presents

the flowchart of the simulation.

The flowchart in Figure 25 has two main parts. The first part is the construction

and evaluation of a linear antenna array, and the second separate part is the construction

and evaluation of a planar antenna array. Both parts start with the construction of the

simulation sensor field, the uniform deployment of the sensor nodes and, finally, the

selection of the CH.

Initially, the sensor field is formatted and a desired number of nodes is distributed

uniformly into it. According to the selected communication distance of the nodes, the

links among them are formed. Two methods are performed for the selection of the linear

array: the iterative approach and the least squares line fitting approach. The iterative

44

approach antenna array initially forms a 3-node linear array and then, according to the

desired total number of nodes, each additional element of the array is added up to the

total number of nodes.

Sensor Field
Deployment

Find 3 nodes linear array

Determination of Comm Distance and
Clusterhead

Next Node?

Number of Nodes in the
Linear Array

Compute ErrorsBeampattern Evaluation Error_results

Line
Fitting
Method

Iterative
Method

Linear Antenna
Array

Number of Nodes in
the Planar Array

Rotations
Completed?

Compute Errors

Beampattern Evaluation

Error_results

Planar Antenna
Array

Linear

Planar Planar or
Linear ?

Iterative or
Concurrent
Method?

Rotations
Completed? Find Desired Array

Find Desired Array

Iterative

Line Fitting

Find Desired Array

Evaluation

NO

YES

Rotate Line

Add Node

NO

YES

Evaluation

Rotate Grid

NO

Line Fitting Method

YES

Figure 25. Simulation Model for the Construction and Evaluation of Linear and Planar
Antenna Array

45

For the line fitting method, the regression line based on least squares is

determined within the cluster and then the ideal node positions are marked. The algorithm

evaluates each solution, and after a number of predetermined rotations, the solution that

provides the best total error metrics is provided. A comparison is performed between the

two solutions based on the metrics described earlier.

For the construction of a planar array, the construction of the sensor field, the

selection of CH and the selection of the connectivity of the nodes is performed as in the

linear antenna array. Next, the least squares line fitting provides a number of solutions,

based on the number of rotations selected. Finally, the solution that provides the best total

error metric is selected.

The MATLAB functions developed for this simulation are included in Appendix

A.

C. LINEAR ARRAY RESULTS
Simulations were performed for both iterative linear array formation and the line

fitting method for a variety of inputs (i.e., number of nodes in the field and frequency of

operation). 1000 Monte Carlo runs for each case were performed and the average metrics

were calculated. The area of the sensor network was 210 10 meters× , and the

communication range of each node was 2 meters. Two frequencies of operation were

used: 300 MHz and 900 MHz. The simulation input data are summarized in Table 2.

For each one of the four simulations, the number of nodes ranged from 100 to

1500 and the resulting density ranged from 1 node / m2 to 15 nodes / m2. For each

density, a Monte Carlo simulation of 1000 runs was performed and the mean of each of

the three errors was calculated, using the metrics described earlier.

Simulation Input Data

Frequency (MHz) 300 300 900 900

 λ/2 (m) 0.500 0.500 0.167 0.167

Number of Runs (Monte Carlo) 1000 1000 1000 1000

Sensor Field Dimensions (m) 10 10× 10 10× 10 10× 10 10×

CH Communication Radius (m) 4 4 2 2

Linear Array Size (# of nodes) 7 9 7 9

Table 2. Simulation Input Data for Linear Array Formation

46

1. Seven-node Array at 300 MHz

The first simulation for linear array formation was performed at 300 MHz with an

array size of 7 nodes for various densities in an area of 210 10 meters× . The

perpendicular distance, inter-node spacing and total error are plotted in Figures 26 to 28.

The green line represents the line fitting approach and the red line represents the iterative

approach.

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Nodes

Pe
rp

ed
ic

ul
ar

 D
ist

an
ce

 E
rr

or
, ε

p

Line Fitting Method
Iterative Method

Figure 26. Average Perpendicular Distance Error pε for 300 MHz and 7 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

47

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Nodes

In
te

r-
no

de
 S

pa
ci

ng
 E

rr
or

,
ε s

Line Fitting Method
Iterative Method

Figure 27. Average Inter-node Spacing Error sε for 300 MHz and 7 Linear Nodes

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Nodes

To
ta

l E
rr

or
, ε

t

Line Fitting Method
Iterative Method

Figure 28. Average Total Error tε for 300 MHz and 7 Nodes Antenna Array for 1000

Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field

48

As we can see, all three error metrics are significantly lower for the line fitting

approach compared with the iterative approach. Both methods show improvement in

linearity with increase in density.

The error metrics for both methods are greater for lower densities with the

greatest at 100 nodes in the 210 10 m× field. The minimum errors are obtained for the

highest density of 1500 nodes in same field. The line fitting approach remains almost

steady after a density of 600 nodes, as compared with the iterative approach for which the

errors continue to decrease for densities higher than 600 nodes, and appears to stabilize

only after about 1200 nodes in the field.

The average beampattern for multiple node densities can be plotted to show the

effectiveness of the line fitting method in the construction of a linear array [17]. Figures

29 to 31 present the average beampattern for field densities of 300, 600 and 1000 nodes.

The blue line in Figures 29 to 31 represents the ideal array beampattern when the

nodes are in the ideal positions (i.e., inter-node distance of / 2λ with no linearity error).

The red line is the result of the average beampattern for the simulations performed (i.e.,

actual positions of the nodes by using the line fitting method for constructing the 7-node

linear array).

Comparing the beampatterns for the three different densities, we see that for 300

nodes the main gain lobe is reduced and the side lobe gain is increased. For 600 nodes,

the main lobe gain is close to ideal and the side lobe gain has improved. The 1000-node

beampattern shows further improved main lobe as compared with the 600-node case and

the nulls show significant improvement. At the density of 600 nodes/ 2m the results show

the best sidelobe level relative to the main beam.

49

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximate Linear

Figure 29. Average Beampattern for Uniform and Approximately Linear 7 Elements

Array at 300 MHz for 300 Nodes for 1000 Monte Carlo Runs

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximate Linear

Figure 30. Average Beampattern for Uniform and Approximately Linear 7 Elements

Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs

50

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximate Linear

Figure 31. Average Beampattern for Uniform and Approximately Linear 7 Elements
Array at 300 MHz for 1000 Nodes for 1000 Monte Carlo Runs

2. Nine-node Array at 300 MHz
The second simulation was performed at 300 MHz for a 9-node linear array.

Using the MATLAB function Linear_line_fitting_comparison_iterative.m, we construct

an array of 9 nodes for various densities in an area of 210 10 meters× . The perpendicular

distance, inter-node spacing, and total error metrics are plotted in Figures 32 to 34. The

green line represents the line fitting approach and the red line the iterative approach.

For the iterative approach, the perpendicular distance error pε is seen to increase

compared to the 7-node simulation at the same densities (see Figure 32).

51

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Nodes

Pe
rp

ed
ic

ul
ar

 D
ist

an
ce

 E
rr

or
, ε

p

Line Fitting Method
Iterative Method

Figure 32. Average Perpendicular Distance Error pε for 300 MHz and 9 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

52

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Nodes

In
te

r-
no

de
 S

pa
ci

ng
 E

rr
or

, ε
s

Line Fitting Method
Iterative Method

Figure 33. Average Inter-node Spacing Error sε for 300 MHz and 9 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Nodes

To
ta

l E
rr

or
, ε

t

Line Fitting Method
Iterative Method

Figure 34. Average Total Error tε for 300 MHz and 9 Nodes Linear Antenna Array for

1000 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field

53

The inter-node spacing error for the line fitting approach for both the 7- and 9-

node arrays (see Figures 27 and 33) is seen to be in same range between 0.1 and 0.2

meters. The difference in the perpendicular and inter-node spacing error for both methods

is also reflected in the total error for both simulations (see Figures 28 and 34) with the

iterative approach method yielding in larger errors.

Figure 35 represents the average beampattern for the line fitting method (red line)

at a density of 600 nodes. The 600-node density is selected because it is the point where

the total error begins to stabilize. As we can see, the beampattern approaches the ideal

case in the main lobe with a slight increase in the side lobes. The average beampattern

improves for higher node densities.

Comparing the results of both error metrics and beampatterns, we conclude that

the performance improves with the density and that the line fitting approach provides

better results in all cases when compared with the iterative method.

Additionally, the comparison between the 7- and 9-node simulations shows that a

slight increase in error metrics for the 9-node case, but the average beampattern for the 9-

node case is better than that of the 7-node array.

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximate Linear

Figure 35. Average Beampattern for Uniform and Approximately Linear 9 Elements
Array at 300 MHz for 600 Nodes for 1000 Monte Carlo Runs

54

3. Seven-node Array at 900 MHz

The third linear array formation simulation was performed at a higher frequency

of 900 MHz for a 7-node case. We construct an array of 7 nodes for various densities in

an area of 210 10 m× . The perpendicular distance, inter-node spacing and total error are

plotted in Figures 36 to 38. The green line represents the line fitting approach and the red

line the iterative approach.

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Nodes

Pe
rp

ed
ic

ul
ar

 D
ist

an
ce

 E
rr

or
, ε

p

Line Fitting Method
Iterative Method

Figure 36. Average Perpendicular Distance Error pε for 900 MHz and 7 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

55

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Nodes

In
te

r-
no

de
 S

pa
ci

ng
 E

rr
or

, ε
s

Line Fitting Method
Iterative Method

Figure 37. Average Inter-node Spacing sε Error for 900 MHz and 7 Nodes Antenna

Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes in the
Sensor Field

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

To
ta

l E
rr

or
, ε

t

Line Fitting Method
Iterative Method

Figure 38. Average Total Error tε for 900 MHz and 7 Nodes Antenna Array for 1000

Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field

56

Figure 39 presents the average beampattern for the line fitting method (red line).

The 600-node density is once again selected because from that point on the total error is

nearly stabilized (below 0.23 meters). As we can see, the beampattern approaches the

ideal case in the main lobe with an increase in the second and third side lobes. As in

previous cases, the average beampattern approaches the ideal pattern for higher node

densities in the field.

Summarizing the results of this simulation, we conclude that performance

improves with density, but the line fitting method shows less improvement over the

iterative method than in the previous cases. Additionally, the beampattern shows that for

increased frequency and the same number of nodes, the performance degrades since the

required inter-node spacing is reduced.

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximate Linear

Figure 39. Average Beampattern for Uniform and Approximately Linear 7 Elements

Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs

57

4. Nine-node Array at 900 MHz

The final linear array formation simulation is performed at 900 MHz for 9 nodes

for various node densities in a field of 210 10 meters× . The perpendicular distance, inter-

node spacing and total error are plotted in Figures 40 to 42. The green line represents the

line fitting approach and the red line the iterative approach.

In this case, the performance increases with the density for both methods. The line

fitting method maintains the same performance while the iterative solution does not

improve when compared with the 7 nodes case for the same frequency. From the

beampattern, we conclude that for the same frequency, more nodes in the array improve

the performance.

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Nodes

Pe
rp

ed
ic

ul
ar

 D
ist

an
ce

 E
rr

or
, ε

p

Line Fitting Method
Iterative Method

Figure 40. Average Perpendicular Distance Error pε for 900 MHz and 9 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

58

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Nodes

In
te

r-
no

de
 S

pa
ci

ng
 E

rr
or

, ε
s

Line Fitting Method
Iterative Method

Figure 41. Average Inter-node Spacing Error sε for 900 MHz and 9 Nodes Linear

Antenna Array for 1000 Monte Carlo Runs as a Function of the Number of Nodes
in the Sensor Field

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

To
ta

l E
rr

or
, ε

t

Line Fitting Method
Iterative Method

Figure 42. Average Total Error tε for 900 MHz and 9 Nodes Linear Antenna Array for

1000 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor Field

59

Figure 43 shows the average beampattern for the line fitting method (red line). As

in previous studies, the 600-node density is selected and we can see that the beampattern

has improved compared to the 7-node case (see Figure 43). For the same frequency, the

performance has improved as more nodes are used in the array.

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal Linear
Approximately Linear

Figure 43. Average Beampattern for Uniform and Approximately Linear 9 Elements

Array at 900 MHz for 600 Nodes for 1000 Monte Carlo Runs

D. PLANAR ANTENNA ARRAY RESULTS AND ANALYSIS

Planar array formation of 3 3× and 4 4× nodes was performed using Monte Carlo

simulations of 100 runs for each case. The area of the sensor network was 210 10 meters×

and the communication radius of each node was 4 meters. We used an operational

frequency of 300 MHz, which results in an inter-node spacing of 0.5 meters. The

simulation input data are shown in Table 8.

60

Simulations Input Data

 λ/2 (m) 0.5 0.5

Number of Runs (Monte Carlo) 100 100

Sensor Field Dimensions (2m) 10 10× 10 10×

Clusterhead Radius (m) 4 4

Planar Array Formation (# of nodes) 3 3× 4 4×

Table 3. Simulation Parameters used for Planar Antenna Array Formation

1. Planar Array of 3 3× Nodes at 300 MHz

The first planar array formation simulation was performed for a 3 3× grid of 9

nodes for a variety of densities in an area of 210 10 meters× . The array formation method

used is the line fitting described in the previous chapter. The results for all densities are

plotted in Figure 44. We can see that the total distance error is slightly below 0.1 meters

for the higher densities.

0 500 1000 1500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

To
ta

l E
rr

or
, ε

t

Number of Nodes

Least Square Fitting Method

Figure 44. Average Total Error tε for 300 MHz and 3 3× Nodes Planar Antenna Array

for 100 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor
Field

61

The average beampattern is plotted to show the effectiveness of the line fitting

method in the construction of a planar array [17]. The average beampattern for node

densities of 300 and 800 are presented in Figures 45 and 46, respectively. Comparing

Figures 45 and 46, we observe an improvement in the side lobe level for the case of 800

nodes.

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal 2D Linear
Approximately 2D Linear

Figure 45. Average Beampattern for 3 3× Uniformly Excited Planar Array at 300 MHz

for 300 Nodes for 100 Monte Carlo Runs

62

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal 2D Linear
Approximately 2D Linear

Figure 46. Average Beampattern for 3 3× Uniformly Excited Planar Array at 300 MHz

for 800 Nodes for 100 Monte Carlo Runs

2. Planar Array of 4 4× Nodes at 300 MHz
The second planar array formation simulation performed was for a 4 4× grid of

16 nodes for a variety of densities in an area of 210 10 meters× . The array formation

method used was again line fitting. The total distance error is plotted in Figure 47.

Comparing Figures 44 and 47, the 3 3× and 4 4× planar arrays at the same

frequency of 300 MHz, we observe slightly increased total error for the 4 4× array at all

densities. The 3 3× planar array provides error below 0.1 m for high densities above

1100 nodes (see Figure 44). The 4 4× case in Figure 47 limits the error to just above 0.1

m for the highest density of 1500 nodes used in the simulations.

63

0 500 1000 1500
0.1

0.15

0.2

0.25

0.3

0.35

To
ta

l E
rr

or
, ε

t

Number of Nodes

Least Square Fitting Method

Figure 47. Average Total Error tε for 300 MHz and 4 4× Nodes Planar Antenna Array

for 100 Monte Carlo Runs as a Function of the Number of Nodes in the Sensor
Field

Average beampatterns for densities of 300 and 800 nodes are shown in Figures 48

and 49, respectively. In Figure 49, we observe a slight improvement in the main lobe as

well as the side lobes for the 800-node case over the 300-node case.

64

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal 2D Linear
Approximately 2D Llinear

Figure 48. Average Beampattern for 4 4× Uniformly Excited Planar Array at 300 MHz

for 300 Nodes for 100 Monte Carlo Runs

-80 -60 -40 -20 0 20 40 60 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

θ (degrees)

Po
w

er
 G

ai
n

(d
B)

Ideal 2D Linear
Approximately 2D Linear

Figure 49. Average Beampattern for 4 4× Uniformly Excited Planar Array at 300 MHz

for 800 Nodes for 100 Monte Carlo Runs

65

E. SUMMARY

In this chapter, we first presented the performance evaluation metrics for

comparing the array formation methods. Three metrics used to evaluate the performance

of the proposed linear array techniques were the perpendicular distance, the inter-node

spacing and the total distance error. In the planar array formation, a total distance metric

was used.

The simulation results were presented and demonstrated the effect of the sensor

node density, frequency of operation, and number of elements in the construction of the

array. The average error metrics in the construction of both the linear and planar arrays

decreased as the density of nodes increased for all simulations. Also, the line fitting

method provided improved performance for all cases compared with the iterative method.

Additionally, for the same frequency, and as more nodes were added to the array, the

total error decreased slightly with density for the line fitting method. Total error increased

significantly for the iterative method for both operating frequencies as more nodes are

added. Finally, for the same number of nodes in the array, the error metrics of the

iterative method decreases with density while the line fitting method shows very little

difference.

For the planar array formation, the line fitting method is used in all cases and the

total error decreased when the node density in the area was increased. The 4 4× planar

array provided slightly increased total error over the 3 3× planar array, but the additional

nodes resulted in improved beampattern.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

V. CONCLUSIONS

Wireless sensor networking (WSN) is a relatively new field of research with

many applications, both military and commercial. In the military, WSNs could be used in

hostile environments to minimize the need for human presence. A wireless sensor

network consists of a large number of small nodes that are deployed in an area of interest

for collecting information. A subgroup of the deployed nodes will then coordinate their

transmissions through beamforming to achieve improved gain. The information, collected

by the WSN, is relayed to an unmanned aerial vehicle (UAV), which cooperates with the

transmission beam of the network.

This work investigated the formation of arrays of nodes in a randomly deployed

sensor field with the main objective of evaluating different approaches for linear and

planar array formation. By selecting appropriate nodes in the sensor field, the goal of

each approach was to form the best possible arrays in order to achieve increased

beamforming gain, thus communication distances. A model was developed and

implemented in MATLAB to simulate the linear and planar array formation. Results were

provided to compare formation methods for both linear and planar arrays.

A. SIGNIFICANT RESULTS
Results showed that the proposed line fitting approach to array formation

demonstrated significant performance improvement over the existing iterative approach

to construct a linear array. Also, the average position errors decreased as the node density

increased in the construction of a linear and/or planar array.

Higher operating frequencies made no significant difference in linearity of the

array in the line fitting method but affected the error metrics of the iterative method. For

the same operating frequency, the beampattern of the line fitting method improved as

more elements are used in the array construction.

68

The line fitting approach was expanded to planar array formation. The simulations

performed for 3 3× and 4 4× node arrays indicated that the average total error metric

increased slightly in the 4 4× case, but the beampattern showed an improvement as more

nodes were added to the array.

B. FUTURE WORK
It was assumed in this work that the nodes in the sensor field have only

knowledge of their inter-node distances. The construction of a local coordination system

and its effects on the construction of a linear and planar antenna array may be

investigated.

The error ε measured in this thesis is based on geometrical calculations. A future

investigation at pattern degradation in terms of electrical error 2πε
λ

 may be examined.

This would allow comparison of results at different frequencies using different number of

elements and different sensor node densities.

The use of complex weights may be also investigated as a way to compensate for

pattern degradation in uniformly excited arrays and to lower sidelobe level by tapering

the excitation.

The sensor field was assumed to be a flat surface in this thesis. The effect of

ground elevation on nodes’ position errors was not examined in this study. The

implementation and deployment of the methods proposed in this thesis extended to

uneven surfaces is a natural next step in this research effort. Existing theory on the effect

of random surface errors on antenna gain and sidelobe level [18] should be investigated

to determine if it can be applied to sensor networks on an uneven surface.

69

APPENDIX

This Appendix includes MATLAB code used in this thesis work. The various

functions used are briefly described. The main MATLAB program is sensor_array.m,

which handles all the sub-programs described below.

Plot_nodes.m

This program simulates an area field (with given dimensions) in which the desired

number of nodes are uniformly distributed.

Add_connectivity.m

This program selects the pairs of nodes that communicate among them, according a given

communication radius for the nodes.

Find_clusterhead.m

This program counts the number of nodes that each node is connected with and one with

the highest connections (node neighbors) is selected as the CH.

Three_element_center.m and Three_element_end

These two programs select the first three nodes, including the CH, subject to the criteria

of linearity and inter-spacing distance. The first is when the CH in the center of three

nodes and the second is when the CH is on one of the ends.

Add_array_node.m

This program selects the next nodes that satisfy the criteria of linearity and inter-node

spacing. The selection is done for one node at the time.

Linear_line_fitting_comparison_iterative.m

Initially, this program selects an iterative solution to form the array and then controls the

lines.m function. Next, it implements the line fitting approach to the nodes within the

communication radius of the CH (cluster) and selects the nodes that are closest to the

ideal positions. After the desired number of rotations, according to the resulting linearity

error, the best line fitting solution is selected.

70

Line_fitting.m

This function evaluates and compares the selected linear arrays (as outlined in Chapter

III) for both the line fitting method and the iterative approach.

Planar_array_iterative.m

This program is an extension of the Linear_least_square.m for the planar array. The best

planar array is selected based on the total error metrics of multiple solutions. This

function also calculates the Euclidean distance error for the planar array.

Planar_lines.m

This function implements the line fitting method and the rotations in the sensor field and

provides the results to Planar_array_iterative.m for evaluation.

Beamf_comparison.m

This function computes the average beampatterns for the line fitting approach in

comparison with the ideal arrays. [17]

71

%%
Linear_line_fitting_comparison_iterative.m
%%

format long
clear all
clc
close all

H=1;
for iii=1:H
n=200; %number of nodes in the field
r=2.8; %communication distance radius of each node
X=10; %X and Y field dimensions
Y=10;
f=300; %communication frequency among nodes
q=9; %number of nodes in the array

[x_vals,y_vals] = plot_nodes(n,X,Y);

[connected, distance] = add_connectivity(n, r, x_vals, y_vals);

clusterhead = findclusterhead(connected, x_vals, y_vals, r, n);

%Start of iterative solution
[linear_array_3,d_3] = three_element_CH_center_v1(clusterhead, x_vals,
y_vals,...
 connected, distance,f,q);

% Find a good linear array with clusterhead at end for q=3
[linear_array_4,d_4] = three_element_CH_end_v1(clusterhead, x_vals,
y_vals,...
 connected, distance,f,q);

%Find the best 3 nodes linear array whith the constrain of lamda /2 and
annotate
%the array on the plot
if d_3==inf & d_4 == inf
 h = errordlg(...
 'The algorithm can not determine a n-element array with the
current CH',...
 'Sensor Network')
elseif d_3 == inf
 antenna_array2 = linear_array_3;
elseif d_4==inf
 antenna_array2 = linear_array_4;
elseif d_3>d_4
 antenna_array2 = linear_array_4;
else
 antenna_array2 = linear_array_3;
end

%plot the first three nodes of the iterative solution
if (min(d_3, d_4) ~= inf)
 plot([x_vals(antenna_array2(1)) x_vals(antenna_array2(2))] , ...

72

 [y_vals(antenna_array2(1)) y_vals(antenna_array2(2))],'rx-',
'LineWidth',2)
 plot([x_vals(antenna_array2(2)) x_vals(antenna_array2(3))] , ...
 [y_vals(antenna_array2(2)) y_vals(antenna_array2(3))],'rx-',
'LineWidth',2)
 hold on
X_values_anten2=[x_vals(antenna_array2(1)), x_vals(antenna_array2(2)),
x_vals(antenna_array2(3))];
Y_values_anten2=[y_vals(antenna_array2(1)), y_vals(antenna_array2(2)),
y_vals(antenna_array2(3))];
format short
 end

%add one node at a time up to desired
array_size=9;
for i = 4:1:array_size
 [antenna_array2, flag, d_tempf, X_values_anten2, Y_values_anten2] =
add_array_node(antenna_array2, x_vals, y_vals,...
 connected, distance,f, X_values_anten2, Y_values_anten2);
format short

X_values_anten2;
Y_values_anten2;

end
hold on
freq=f;
intd= (((3*10^8)/(freq*10^6)))/2 ;
figure(2)
plot(x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,...
 'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8)
hold on

clusterhead_neighbors = find(connected(clusterhead,:) == 1);

index=size(clusterhead_neighbors,2);
indexx=(1+size(clusterhead_neighbors,2));
daspect('manual')
daspect([1 1 1])
axis([0 X 0 Y])
h = gcf;
rect = [50, 65, 650, 620];
set(h, 'Position', rect);

plot(x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors),
'ko')
 for i = 1:1:index
 text(x_vals(i)+(X*10),y_vals(i)+(Y*1000),int2str(i), 'FontSize',
8);
 end

hold on
%Start of least squares line fitting solution
X_col=[x_vals(clusterhead_neighbors) x_vals(clusterhead)]';
Y_col=[y_vals(clusterhead_neighbors) y_vals(clusterhead)]';

73

XX=[ones(indexx,1) X_col];
XX2=[X_col];
YY=[Y_col];
c=XX\YY;
arith=abs(c(2)*XX2-YY+c(1));
paran=sqrt(c(2)^2+1);
d=arith/paran;
f=mean(d);

t=0:0.1:10;
z=c(2)*t+c(1);

k=[-(1/c(2)); y_vals(clusterhead)-(-1/c(2))*(x_vals(clusterhead))] ;
r=k(1)*t+k(2);
arithh=abs(k(1)*XX2-YY+k(2));
parann=sqrt(k(1)^2+1);
dd=arithh/parann;
ff=mean(dd);
plot(t,z,'r-',t,r,'b-')

hold on
%Plot least square fitting and perpendicular lines left an right
zz1=c(2)*t+c(1)+intd*(sqrt(1+(c(2))^2));
zz2=c(2)*t+c(1)-intd*(sqrt(1+(c(2))^2));
rr1=k(1)*t+k(2)+intd*(sqrt(1+(k(1))^2));
rr2=k(1)*t+k(2)-intd*(sqrt(1+(k(1))^2));
hold on
plot(t,zz1,'r--',t,zz2,'r--');
hold on
plot(t,rr1,'b--',t,rr2,'b--');

connected = zeros(index);
distance = inf * ones(index);

for i = 1:1:(indexx)
 for j = (i+1):1:indexx
 connected(i,j) = 1;
 distance(i,j) = sqrt((x_vals(i)-x_vals(j))^2 +
(y_vals(i)-y_vals(j))^2);
 d_epalithesh(i)=arith(i)/paran;
 end

end

%FIND EDGES ON THE PARALLILOGRAM

%Ast point
xa=0;
ya=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)];
XYA=[xa ya];
XYA=inv(A)*B

74

%Bth point
xd=0;
yd=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)];
XYB=[xd yd];
XYB=inv(A)*B

%2nd point
xb=0;
yb=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)];
XYC=[xb yb];
XYC=inv(A)*B

%Bth point
xd=0;
yd=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)];
XYD=[xd yd];
XYD=inv(A)*B

%2nd point
xb=0;
yb=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-2*intd*(sqrt(1+(c(2))^2)); k(2)];
XYE=[xb yb];
XYE=inv(A)*B

%Bth point
xd=0;
yd=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+3*intd*(sqrt(1+(c(2))^2)); k(2)];
XYF=[xd yd];
XYF=inv(A)*B

%2nd point
xb=0;
yb=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-3*intd*(sqrt(1+(c(2))^2)); k(2)];
XYG=[xb yb];
XYG=inv(A)*B

%Bth point
xd=0;
yd=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+4*intd*(sqrt(1+(c(2))^2)); k(2)];
XYH=[xd yd];

75

XYH=inv(A)*B

%2nd point
xb=0;
yb=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-4*intd*(sqrt(1+(c(2))^2)); k(2)];
XYI=[xb yb];
XYI=inv(A)*B

plot(XYA(2),XYA(1), 'bx', XYB(2), XYB(1), 'bx',XYC(2), XYC(1),
'bx',XYD(2), XYD(1), 'bx',...
 XYE(2), XYE(1), 'bx',XYF(2), XYF(1), 'bx',XYG(2), XYG(1),
'bx',XYH(2), XYH(1), 'bx',XYI(2), XYI(1), 'bx')

vv1=Inf
for i=1:index
 db=sqrt((XYB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYB(1)-
y_vals(clusterhead_neighbors(i)))^2)

 if db<vv1
 vv1=db
 end1=i
 end
end
vv2=Inf
for i=1:index
 if i~=end1
 dc=sqrt((XYC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYC(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dc<vv2
 vv2=dc
 end2=i
 end
 end
end

vv3=Inf
for i=1:index
 if i~=end1 & i~=end2
 dd=sqrt((XYD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYD(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dd<vv3
 vv3=dd
 end3=i
 end
 end
end
vv4=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3
 de=sqrt((XYE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYE(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if de<vv4
 vv4=de
 end4=i

76

 end
 end
end

vv5=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4
 df=sqrt((XYF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYF(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if df<vv5
 vv5=df
 end5=i
 end
 end
end

vv6=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5
 dg=sqrt((XYG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYG(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dg<vv6
 vv6=dg
 end6=i
 end
 end
end

vv7=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
 dh=sqrt((XYH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYH(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dh<vv7
 vv7=dh
 end7=i
 end
 end
end

vv8=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
i~=end7
 di=sqrt((XYI(2)-x_vals(clusterhead_neighbors(i)))^2+(XYI(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if di<vv8
 vv8=di
 end8=i
 end
 end
end

d_total1=vv1+vv2+vv3+vv4+vv5+vv6+vv7+vv8
%plot first solution
plot([x_vals(clusterhead) x_vals(clusterhead_neighbors(end1))] , ...

77

 [y_vals(clusterhead) y_vals(clusterhead_neighbors(end1))],'go-
', 'LineWidth',2)
plot([x_vals(clusterhead) x_vals(clusterhead_neighbors(end2))] , ...
 [y_vals(clusterhead) y_vals(clusterhead_neighbors(end2))],'go-
', 'LineWidth',2)
plot([x_vals(clusterhead_neighbors(end1))
x_vals(clusterhead_neighbors(end3))] , ...
 [y_vals(clusterhead_neighbors(end1))
y_vals(clusterhead_neighbors(end3))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end2))
x_vals(clusterhead_neighbors(end4))] , ...
 [y_vals(clusterhead_neighbors(end2))
y_vals(clusterhead_neighbors(end4))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end3))
x_vals(clusterhead_neighbors(end5))] , ...
 [y_vals(clusterhead_neighbors(end3))
y_vals(clusterhead_neighbors(end5))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end4))
x_vals(clusterhead_neighbors(end6))] , ...
 [y_vals(clusterhead_neighbors(end4))
y_vals(clusterhead_neighbors(end6))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end5))
x_vals(clusterhead_neighbors(end7))] , ...
 [y_vals(clusterhead_neighbors(end5))
y_vals(clusterhead_neighbors(end7))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end6))
x_vals(clusterhead_neighbors(end8))] , ...
 [y_vals(clusterhead_neighbors(end6))
y_vals(clusterhead_neighbors(end8))],'go-', 'LineWidth',2)

 hold on

%Second solution on rotated lines
 %Ast point
xa=0;
ya=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)];
XYAA=[xa ya];
XYAA=inv(A)*B

 %B point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)+intd*(sqrt(1+(k(1))^2)); c(1)];
XYBB=[xd yd];
XYBB=inv(A)*B

 %C point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)-intd*(sqrt(1+(k(1))^2)); c(1)];
XYCC=[xd yd];
XYCC=inv(A)*B

78

 %D point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)+2*intd*(sqrt(1+(k(1))^2)); c(1)];
XYDD=[xd yd];
XYDD=inv(A)*B

 %E point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)-2*intd*(sqrt(1+(k(1))^2)); c(1)];
XYEE=[xd yd];
XYEE=inv(A)*B

%F point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)+3*intd*(sqrt(1+(k(1))^2)); c(1)];
XYFF=[xd yd];
XYFF=inv(A)*B

%G point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)-3*intd*(sqrt(1+(k(1))^2)); c(1)];
XYGG=[xd yd];
XYGG=inv(A)*B

%H point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)+4*intd*(sqrt(1+(k(1))^2)); c(1)];
XYHH=[xd yd];
XYHH=inv(A)*B

% I point
xd=0;
yd=0;
A=[1 -k(1); 1 -c(2)];
B=[k(2)-4*intd*(sqrt(1+(k(1))^2)); c(1)];
XYII=[xd yd];
XYII=inv(A)*B

hold on
plot(XYAA(2),XYAA(1), 'rx', XYBB(2), XYBB(1), 'rx',XYCC(2), XYCC(1),
'rx',XYDD(2), XYDD(1), 'rx',...
 XYEE(2), XYEE(1), 'rx',XYFF(2), XYFF(1), 'rx',XYGG(2), XYGG(1),
'rx',XYHH(2), XYHH(1), 'rx',XYII(2), XYII(1), 'rx')

79

%end1=0
vvv1=Inf
for i=1:index
 dbb=sqrt((XYBB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYBB(1)-
y_vals(clusterhead_neighbors(i)))^2)

 if dbb<vvv1
 vvv1=dbb
 end11=i
 end
end
vvv2=Inf
for i=1:index
 if i~=end11
 dcc=sqrt((XYCC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYCC(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dcc<vvv2
 vvv2=dcc
 end22=i
 end
 end
end

vvv3=Inf
for i=1:index
 if i~=end11 & i~=end22
 ddd=sqrt((XYDD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYDD(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if ddd<vvv3
 vvv3=ddd
 end33=i
 end
 end
end
vvv4=Inf
for i=1:index
 if i~=end11 & i~=end22 & i~=end33
 dee=sqrt((XYEE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYEE(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dee<vvv4
 vvv4=dee
 end44=i
 end
 end
end

vvv5=Inf
for i=1:index
 if i~=end11 & i~=end22 & i~=end33 & i~=end44
 dff=sqrt((XYFF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYFF(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dff<vvv5
 vvv5=dff
 end55=i
 end
 end

80

end

vvv6=Inf
for i=1:index
 if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55
 dgg=sqrt((XYGG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYGG(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dgg<vvv6
 vvv6=dgg
 end66=i
 end
 end
end

vvv7=Inf
for i=1:index
 if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55 & i~=end66
 dhh=sqrt((XYHH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYHH(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dhh<vvv7
 vvv7=dhh
 end77=i
 end
 end
end

vvv8=Inf
for i=1:index
 if i~=end11 & i~=end22 & i~=end33 & i~=end44 & i~=end55 & i~=end66
i~=end77
 dii=sqrt((XYII(2)-x_vals(clusterhead_neighbors(i)))^2+(XYII(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dii<vvv8
 vvv8=dii
 end88=i
 end
 end
end

d_total1b=vvv1+vvv2+vvv3+vvv4+vvv5+vvv6+vvv7+vvv8
%plot second solution
plot([x_vals(clusterhead) x_vals(clusterhead_neighbors(end11))] ,
...
 [y_vals(clusterhead) y_vals(clusterhead_neighbors(end11))
],'go-', 'LineWidth',2)
plot([x_vals(clusterhead) x_vals(clusterhead_neighbors(end22))] ,
...
 [y_vals(clusterhead) y_vals(clusterhead_neighbors(end22))
],'go-', 'LineWidth',2)
plot([x_vals(clusterhead_neighbors(end11))
x_vals(clusterhead_neighbors(end33))] , ...
 [y_vals(clusterhead_neighbors(end11))
y_vals(clusterhead_neighbors(end33))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end22))
x_vals(clusterhead_neighbors(end44))] , ...

81

 [y_vals(clusterhead_neighbors(end22))
y_vals(clusterhead_neighbors(end44))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end33))
x_vals(clusterhead_neighbors(end55))] , ...
 [y_vals(clusterhead_neighbors(end33))
y_vals(clusterhead_neighbors(end55))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end44))
x_vals(clusterhead_neighbors(end66))] , ...
 [y_vals(clusterhead_neighbors(end44))
y_vals(clusterhead_neighbors(end66))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end55))
x_vals(clusterhead_neighbors(end77))] , ...
 [y_vals(clusterhead_neighbors(end55))
y_vals(clusterhead_neighbors(end77))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end66))
x_vals(clusterhead_neighbors(end88))] , ...
 [y_vals(clusterhead_neighbors(end66))
y_vals(clusterhead_neighbors(end88))],'go-', 'LineWidth',2)

 hold off

hold off
 hold off

 DDa_total=min(d_total1, d_total1b)

 if DDa_total==d_total1
 X_vals_linear_array=[x_vals(clusterhead_neighbors(end7)),
x_vals(clusterhead_neighbors(end5)),
x_vals(clusterhead_neighbors(end3)),
x_vals(clusterhead_neighbors(end1)), x_vals(clusterhead),
x_vals(clusterhead_neighbors(end2)),
x_vals(clusterhead_neighbors(end4)),
x_vals(clusterhead_neighbors(end6)),x_vals(clusterhead_neighbors(end8))
]
 Y_vals_linear_array=[y_vals(clusterhead_neighbors(end7)),
y_vals(clusterhead_neighbors(end5)),
y_vals(clusterhead_neighbors(end3)),
y_vals(clusterhead_neighbors(end1)), y_vals(clusterhead),
y_vals(clusterhead_neighbors(end2)),
y_vals(clusterhead_neighbors(end4)),
y_vals(clusterhead_neighbors(end6)),y_vals(clusterhead_neighbors(end8))
]

 elseif DDa_total==d_total1b
 X_vals_linear_array=[x_vals(clusterhead_neighbors(end77)),
x_vals(clusterhead_neighbors(end55)),
x_vals(clusterhead_neighbors(end33)),
x_vals(clusterhead_neighbors(end11)), x_vals(clusterhead),
x_vals(clusterhead_neighbors(end22)),
x_vals(clusterhead_neighbors(end44)),
x_vals(clusterhead_neighbors(end66)),x_vals(clusterhead_neighbors(end88
))]
 Y_vals_linear_array=[y_vals(clusterhead_neighbors(end77)),
y_vals(clusterhead_neighbors(end55)),

82

y_vals(clusterhead_neighbors(end33)),
y_vals(clusterhead_neighbors(end11)), y_vals(clusterhead),
y_vals(clusterhead_neighbors(end22)),
y_vals(clusterhead_neighbors(end44)),
y_vals(clusterhead_neighbors(end66)),y_vals(clusterhead_neighbors(end88
))]

 end
 ANTENNA2(iii,:)=antenna_array2
 X_VALUES_ANTENNA2(iii,:)=X_values_anten2
 Y_VALUES_ANTENNA2(iii,:)=Y_values_anten2

X_vals_Linear_array_trend(iii, :)=X_vals_linear_array
Y_vals_Linear_array_trend(iii, :)=Y_vals_linear_array

hold off
 end
%best solutions of iterative and least squares line fitting are
evaluated at
%linear_fitting function
 [mean_dd, mean_dd2, Int_mean, Int2_mean, Tot_mean,
Tot2_mean]=linnear_fitting9(...
 X_vals_Linear_array_trend, Y_vals_Linear_array_trend,
X_VALUES_ANTENNA2, Y_VALUES_ANTENNA2);

clc
X_VALUES_ANTENNA2(iii,:)=X_values_anten2
Y_VALUES_ANTENNA2(iii,:)=Y_values_anten2

X_vals_Linear_array_trend(iii, :)=X_vals_linear_array
Y_vals_Linear_array_trend(iii, :)=Y_vals_linear_array
 mean_dd
 mean_dd2
 Int_mean
 Int2_mean
 Tot_mean
 Tot2_mean

83

%%
% Linnear_fitting.m
%%

function [mean_dd, mean_dd2, Int_mean, Int2_mean, Tot_mean,
Tot2_mean]=linnear_fitting(...
 x_vals_Linear_array_trend, y_vals_Linear_array_trend,
X_VALUES_ANTENNA2, Y_VALUES_ANTENNA2)
GG=1000
H=GG; %Number of iteration to be tested for errors
K=GG;
G=GG;
T=GG;
 for i=1:H

 f=300;
dddd = (((3*10^8)/(f*10^6)))/2 ;

%x,y are the one step calculation of nodes array
%x2,y2 are the multible steps calculation of node array

x=x_vals_Linear_array_trend;
y=y_vals_Linear_array_trend;
x2=X_VALUES_ANTENNA2;
y2=Y_VALUES_ANTENNA2;

% Get one line each time and find the error
x=x(i,:);
y=y(i,:);
x2=x2(i,:);
y2=y2(i,:);

x=x';
y=y';
x2=x2';
y2=y2';

%Perpedicular distance error
X=[ones(9,1) x]; %9 for 9-node array or 7 for 7-node array
Y=y;
c=X\Y;
t=0:0.1:10;
z=c(2)*t+c(1);

for j=1:9 %9 for 9-node array or 7 for 7-node array

arith(j)=abs(c(2)*x(j)-y(j)+c(1));
paran(j)=sqrt((c(2))^2+1);
d(j)=arith(j)/paran(j);
t=0:0.1:10;
z=c(2)*t+c(1);
k=[-(1/c(2)); y(j)+(1/c(2))*x(j)] ;
r=k(1)*t+k(2);

xx(j)=(k(2)-c(1))/(c(2)-k(1));

84

yy(j)=k(1)*(xx(j))+k(2);

 end

x=x';
y=y';
X2=[ones(9,1) x2];
Y2=y2;
c2=X2\Y2;
t=0:0.1:10;
z2=c2(2)*t+c2(1);

for j=1:9
arith2(j)=abs(c2(2)*x2(j)-y2(j)+c2(1));
paran2(j)=sqrt((c2(2))^2+1);
d2(j)=arith2(j)/paran2(j);
t=0:0.1:10;
z2=c2(2)*t+c2(1);
k2=[-(1/c2(2)); y2(j)+(1/c2(2))*x2(j)] ;
r2=k2(1)*t+k2(2);
xx2(j)=(k2(2)-c2(1))/(c2(2)-k2(1));
yy2(j)=k2(1)*(xx2(j))+k2(2);
 end

x2=x2';
y2=y2';
x=x';
y=y';
Xxx(i,:)=xx;
Yyy(i,:)=yy;
Xxx2(i,:)=xx2;
Yyy2(i,:)=yy2;

dd(i,:)=d;
dd2(i,:)=d2;
end

 dd;
 dd2;
 m_dd=mean(dd');
 m_dd2=mean(dd2');
 mean_dd=mean(m_dd)
 mean_dd2=mean(m_dd2)

 %Inter-node distance error
 for g=1:G
 xx=Xxx(g,:);
 yy=Yyy(g,:);
 xx2=Xxx2(g,:);
 yy2=Yyy2(g,:);

for jj=1:8
 prod(jj)=sqrt((xx(1)-xx(jj+1))^2+(yy(1)-yy(jj+1))^2);
 prod2(jj)=sqrt((xx2(1)-xx2(jj+1))^2+(yy2(1)-yy2(jj+1))^2);
end

85

 prodd(g,:)=prod;
 prodd2(g,:)=prod2;
 end

 prodd;
 prodd2;
 pro=mean(prodd);
 pro2=mean(prodd2);
 pro_mean=mean(pro);
 pro2_mean=mean(pro2);

 for k=1:K

 pr=prodd(k,:);
 pr2=prodd2(k,:);

 for jj=1:8
 interd(jj)=abs(((jj)*dddd)-(pr(jj)));
 interd2(jj)=abs(((jj)*dddd)-(pr2(jj)));
 end

 Interdd(k,:)=interd;
 Interdd2(k,:)=interd2;
 end
 Interdd;
 Interdd2;
 Int=mean(Interdd');
 Int2=mean(Interdd2');
 Int_mean=mean(Int);
 Int2_mean=mean(Int2);

%Total error

 for t=1:T

 pr=prodd(t,:);
 pr2=prodd2(t,:);
 Int=Interdd(t,:);
 Int2=Interdd2(t,:);
 dd_d=dd(t,:);
 dd2_d=dd2(t,:);

 for jj=1:8
 tot(jj)=sqrt((dd_d(jj))^2+(Int(jj))^2);
 tot2(jj)=sqrt((dd2_d(jj))^2+(Int2(jj))^2);
 end
 Total(t,:)=tot;
 Total2(t,:)=tot2;
 end
 Total;
 Total2;
 Tot=mean(Total');
 Tot2=mean(Total2');
 Tot_mean=mean(Tot); Tot2_mean=mean(Tot2);

86

%%%
% Planar_array_iterative.m
%%

format short
clear all
clc
close all

H=2;
for iii=1:H

n=900; %insert the data
r=1.5;
X=10;
Y=10;

q=7;
freq=300;
intd= (((3*10^8)/(freq*10^6)))/2 ;

%Plot nodes
x_vals = rand(1 , n);
y_vals = rand(1 , n);

x_vals = x_vals * X;
y_vals = y_vals * Y;

figure(1)
plot(x_vals, y_vals, 'ko')

daspect('manual')
daspect([1 1 1])
axis([0 X 0 Y])

h = gcf;
rect = [50, 65, 650, 620];
set(h, 'Position', rect);

for i = 1:1:n
 text(x_vals(i)+(X/55),y_vals(i)+(Y/55),int2str(i), 'FontSize', 8)
end
hold on

%Add connectivity
connected = zeros(n);
distance = inf * ones(n);

for i = 1:1:(n-1)

87

 for j = (i+1):1:n
 if (((x_vals(i) - x_vals(j))^2 + (y_vals(i) -
y_vals(j))^2) < r*r)
 connected(i,j) = 1;
 distance(i,j) = sqrt((x_vals(i)-x_vals(j))^2 +
(y_vals(i)-y_vals(j))^2);
 end
 end
end

for i = 1:1:(n-1)
 for j = (i+1):1:n
 if (connected(i,j) == 1)
 plot([x_vals(i) x_vals(j)] , [y_vals(i) y_vals(j)
])
 end
 end
end

for i = 2:1:n
 for j = 1:1:(i-1)
 connected(i,j) = connected(j,i);
 distance(i,j)=distance(j,i);
 end
end

%Find clusterhead

row_count_dok = zeros(1,n);
TT=0;
for i=1:1:n
 for j=(i+1):1:n
 if (((x_vals(i) - x_vals(j))^2 + (y_vals(i) - y_vals(j))^2)
< r*r)
 row_count_dok(i)= row_count_dok(i) + 1;

 end
 end
 end
H=max(row_count_dok)
 % max(row_count_dok)
for i = 1:n
 if row_count_dok(i) == H
 clusterhead = i;
 end
end

plot(x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,...
 'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8)

clusterhead_neighbors = find(connected(clusterhead,:) == 1);

index=size(clusterhead_neighbors,2);
indexx=(1+size(clusterhead_neighbors,2));

88

%New figure only with clusterhead and clusterhead_neighbors
hold off
figure(2)
plot(x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,...
 'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8)
hold on

daspect('manual')
daspect([1 1 1])
axis([0 X 0 Y])

h = gcf;
rect = [50, 65, 650, 620];
set(h, 'Position', rect);

plot(x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors),
'ko')
 for i = 1:1:index
 text(x_vals(i)+(X*10),y_vals(i)+(Y*1000),int2str(i), 'FontSize',
8);
 end

hold on

%Plot least square fitting and perpendicular lines left an right
X_col=[x_vals(clusterhead_neighbors) x_vals(clusterhead)]';
Y_col=[y_vals(clusterhead_neighbors) y_vals(clusterhead)]';

XX=[ones(indexx,1) X_col];
XX2=[X_col];
YY=[Y_col];
c=XX\YY;

%function that finds the solution and evaluates the results
[planar] = lines (clusterhead, connected, x_vals, y_vals, c ,XX2, YY,
intd);
hold off
for i=1:6
figure(i+1)
plot(x_vals(clusterhead), y_vals(clusterhead), 'ro', 'LineWidth',1,...
 'MarkerEdgeColor','k', 'MarkerFaceColor','r', 'MarkerSize',8)
hold on
daspect('manual')
daspect([1 1 1])
axis([0 X 0 Y])

h = gcf;
rect = [50, 65, 650, 620];
set(h, 'Position', rect);

plot(x_vals(clusterhead_neighbors), y_vals(clusterhead_neighbors),
'ko')

89

hold on
c(2)=c(2)-tan(pi/6)
c(1)=y_vals(clusterhead)-(c(2))*x_vals(clusterhead)

[d_total1] = Planar_lines (clusterhead, connected, x_vals, y_vals, c
,XX2, YY, intd);

d_total1
hold off
D_total1(i,:)=d_total1

end

DD_total1=min(D_total1)
DDD_total1(iii,:)=DD_total1
End
%results for the planar array
Final_total1=min(DDD_total1)

90

%%
% Planar_lines.m
%%

function [planar] = Planar_lines (clusterhead, connected, x_vals, ...
 y_vals, c ,XX2, YY, intd)

clusterhead_neighbors = find(connected(clusterhead,:) == 1);
index=size(clusterhead_neighbors,2);
indexx=(1+size(clusterhead_neighbors,2));
arith=abs(c(2)*XX2-YY+c(1));
paran=sqrt(c(2)^2+1);
d=arith/paran;
f=mean(d);

t=0:0.1:10;
z=c(2)*t+c(1);
%start to construct the lines and points
k=[-(1/c(2)); y_vals(clusterhead)-(-1/c(2))*(x_vals(clusterhead))] ;
r=k(1)*t+k(2);
arithh=abs(k(1)*XX2-YY+k(2));
parann=sqrt(k(1)^2+1);
dd=arithh/parann;
ff=mean(dd);
plot(t,z,'r-',t,r,'b-')

hold on
zz1=c(2)*t+c(1)+intd*(sqrt(1+(c(2))^2));
zz2=c(2)*t+c(1)-intd*(sqrt(1+(c(2))^2));
zz3=c(2)*t+c(1)+2*intd*(sqrt(1+(c(2))^2));
zz4=c(2)*t+c(1)-2*intd*(sqrt(1+(c(2))^2));
rr1=k(1)*t+k(2)+intd*(sqrt(1+(k(1))^2));
rr2=k(1)*t+k(2)-intd*(sqrt(1+(k(1))^2));
rr3=k(1)*t+k(2)+2*intd*(sqrt(1+(k(1))^2));

hold on
plot(t,zz1,'r--',t,zz2,'r--');
hold on
plot(t,rr1,'b--',t,rr2,'b--');
hold on
plot(t,zz3,'r--');
hold on
plot(t,rr3,'b--');

connected = zeros(index);
distance = inf * ones(index);
 for i = 1:1:(indexx)
 for j = (i+1):1:indexx
 connected(i,j) = 1;
 distance(i,j) = sqrt((x_vals(i)-x_vals(j))^2 +…
 (y_vals(i)-y_vals(j))^2);
 d_epalithesh(i)=arith(i)/paran;
 %kk(i)=arithh(i)/parann;
 end
 end

91

%FIND EDGES ON THE PARALLILOGRAM
%1st point in the center
xa=0;
ya=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)];
XYA=[xa ya];
XYA=inv(A)*B

%2nd point
xb=0;
yb=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)+intd*(sqrt(1+(k(1))^2))];
XYB=[xb yb];
XYB=inv(A)*B

%3rd point
xc=0;
yc=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))];
XYC=[xc yc];
XYC=inv(A)*B

%4th point
xd=0;
yd=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)];
XYD=[xd yd];
XYD=inv(A)*B

%5th point
xe=0;
ye=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))];
XYE=[xe ye];
XYE=inv(A)*B

%6th point
xf=0;
yf=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)-intd*(sqrt(1+(k(1))^2))];
XYF=[xf yf];
XYF=inv(A)*B

%7th point
xg=0;
yg=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))];
XYG=[xg yg];
XYG=inv(A)*B

92

%8th point
xh=0;
yh=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)];
XYH=[xh yh];
XYH=inv(A)*B

%9th point
xi=0;
yi=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))];
XYI=[xi yi];
XYI=inv(A)*B;

%10th point
xj=0;
yj=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)-intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))];
XYJ=[xj yj];
XYJ=inv(A)*B;

%11th point
xk=0;
yk=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1); k(2)+2*intd*(sqrt(1+(k(1))^2))];
XYK=[xk yk];
XYK=inv(A)*B;

%12th point
xl=0;
yl=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))];
XYL=[xl yl];
XYL=inv(A)*B;

%13th point
xm=0;
ym=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)+2*intd*(sqrt(1+(k(1))^2))];
XYM=[xm ym];
XYM=inv(A)*B;

%14th point
xn=0;
yn=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)+intd*(sqrt(1+(k(1))^2))];
XYN=[xn yn];

93

XYN=inv(A)*B;

%15th point
xo=0;
yo=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)];
XYO=[xo yo];
XYO=inv(A)*B;

%16th point
xp=0;
yp=0;
A=[1 -c(2); 1 -k(1)];
B=[c(1)+2*intd*(sqrt(1+(c(2))^2)); k(2)-intd*(sqrt(1+(k(1))^2))];
XYP=[xp yp];
XYP=inv(A)*B;

plot(XYA(2),XYA(1), 'bx', XYB(2), XYB(1), 'bx',XYC(2), XYC(1),
'bx',XYD(2), XYD(1), 'bx',...
 XYE(2), XYE(1), 'bx',XYF(2), XYF(1), 'bx',XYG(2), XYG(1),
'bx',XYH(2), XYH(1), 'bx',XYI(2), XYI(1), 'bx', XYJ(2), XYJ(1),'bx',
XYK(2),XYK(1),'bx',...
 XYL(2),XYL(1),'bx', XYM(2),XYM(1),'bx',XYN(2),XYN(1), 'bx', XYO(2),
XYO(1),'bx', XYP(2),XYP(1),'bx')

%Distances from the points
for i=1:indexx
da(i)=sqrt((XYA(1)-x_vals(i))^2+(XYA(2)-y_vals(i))^2)
db(i)=sqrt((XYB(1)-x_vals(i))^2+(XYB(2)-y_vals(i))^2)
dc(i)=sqrt((XYC(1)-x_vals(i))^2+(XYC(2)-y_vals(i))^2)
dd(i)=sqrt((XYD(1)-x_vals(i))^2+(XYD(2)-y_vals(i))^2)
de(i)=sqrt((XYE(1)-x_vals(i))^2+(XYE(2)-y_vals(i))^2)
df(i)=sqrt((XYF(1)-x_vals(i))^2+(XYF(2)-y_vals(i))^2)
di(i)=sqrt((XYI(1)-x_vals(i))^2+(XYI(2)-y_vals(i))^2)
dh(i)=sqrt((XYH(1)-x_vals(i))^2+(XYH(2)-y_vals(i))^2)
dj(i)=sqrt((XYJ(1)-x_vals(i))^2+(XYJ(2)-y_vals(i))^2)
dk(i)=sqrt((XYK(1)-x_vals(i))^2+(XYK(2)-y_vals(i))^2)
dl(i)=sqrt((XYL(1)-x_vals(i))^2+(XYL(2)-y_vals(i))^2)
dm(i)=sqrt((XYM(1)-x_vals(i))^2+(XYM(2)-y_vals(i))^2)
dn(i)=sqrt((XYN(1)-x_vals(i))^2+(XYN(2)-y_vals(i))^2)
do(i)=sqrt((XYO(1)-x_vals(i))^2+(XYO(2)-y_vals(i))^2)
dp(i)=sqrt((XYP(1)-x_vals(i))^2+(XYP(2)-y_vals(i))^2)
end

end1=0
vv1=Inf
for i=1:index
 db=sqrt((XYB(2)-x_vals(clusterhead_neighbors(i)))^2+(XYB(1)-
y_vals(clusterhead_neighbors(i)))^2)

 if db<vv1
 vv1=db
 end1=i
 end
end

94

vv2=Inf
for i=1:index
 if i~=end1
 dc=sqrt((XYC(2)-x_vals(clusterhead_neighbors(i)))^2+(XYC(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dc<vv2
 vv2=dc
 end2=i
 end
 end
end

vv3=Inf
for i=1:index
 if i~=end1 & i~=end2
 dd=sqrt((XYD(2)-x_vals(clusterhead_neighbors(i)))^2+(XYD(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dd<vv3
 vv3=dd
 end3=i
 end
 end
end
vv4=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3
 de=sqrt((XYE(2)-x_vals(clusterhead_neighbors(i)))^2+(XYE(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if de<vv4
 vv4=de
 end4=i
 end
 end
end

vv5=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4
 df=sqrt((XYF(2)-x_vals(clusterhead_neighbors(i)))^2+(XYF(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if df<vv5
 vv5=df
 end5=i
 end
 end
end

vv6=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5
 dg=sqrt((XYG(2)-x_vals(clusterhead_neighbors(i)))^2+(XYG(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dg<vv6
 vv6=dg
 end6=i
 end

95

 end
end

vv7=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
 dh=sqrt((XYH(2)-x_vals(clusterhead_neighbors(i)))^2+(XYH(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dh<vv7
 vv7=dh
 end7=i
 end
 end
end

vv8=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
 & i~=end7
 di=sqrt((XYI(2)-x_vals(clusterhead_neighbors(i)))^2+(XYI(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if di<vv8
 vv8=di
 end8=i
 end
 end
end

vv9=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
 & i~=end7 & i~=end8
 dj=sqrt((XYJ(2)-x_vals(clusterhead_neighbors(i)))^2+(XYJ(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dj<vv9
 vv9=dj
 end9=i
 end
 end
end

vv10=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6
 & i~=end7 & i~=end8 & i~=end9
 dk=sqrt((XYK(2)-x_vals(clusterhead_neighbors(i)))^2+(XYK(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dk<vv10
 vv10=dk
 end10=i
 end
 end
end

vv11=Inf
for i=1:index

96

 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &
 & i~=end7 & i~=end8 & i~=end9 & i~=end10
 dl=sqrt((XYL(2)-x_vals(clusterhead_neighbors(i)))^2+(XYL(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dl<vv11
 vv11=dl
 end11=i
 end
 end
end

vv12=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &
 i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11
 dm=sqrt((XYM(2)-x_vals(clusterhead_neighbors(i)))^2+(XYM(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dm<vv12
 vv12=dm
 end12=i
 end
 end
end

vv13=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &
i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12
 dn=sqrt((XYN(2)-x_vals(clusterhead_neighbors(i)))^2+(XYN(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dn<vv13
 vv13=dn
 end13=i
 end
 end
end

vv14=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &
 i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12 &
 i~=end13
 do=sqrt((XYO(2)-x_vals(clusterhead_neighbors(i)))^2+(XYO(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if do<vv14
 vv14=do
 end14=i
 end
 end
end

vv15=Inf
for i=1:index
 if i~=end1 & i~=end2 & i~=end3 & i~=end4 & i~=end5 & i~=end6 &
 i~=end7 & i~=end8 & i~=end9 & i~=end10 & i~=end11 & i~=end12 &
 i~=end13 & i~=end14

97

 dp=sqrt((XYP(2)-x_vals(clusterhead_neighbors(i)))^2+(XYP(1)-
y_vals(clusterhead_neighbors(i)))^2)
 if dp<vv15
 vv15=dp
 end15=i
 end
 end
end

d_total1=vv1+vv2+vv3+vv4+vv5+vv6+vv7+vv8+vv9+vv10+vv11+vv12+vv13+vv14+v
v15
%plot the constracted planar array
plot([x_vals(clusterhead) x_vals(clusterhead_neighbors(end1))] , ...
 [y_vals(clusterhead) y_vals(clusterhead_neighbors(end1))],'go-
', 'LineWidth',2)
plot([x_vals(clusterhead_neighbors(end1))
x_vals(clusterhead_neighbors(end2))] , ...
 [y_vals(clusterhead_neighbors(end1))
y_vals(clusterhead_neighbors(end2))],'go-', 'LineWidth',2)
plot([x_vals(clusterhead_neighbors(end2))
x_vals(clusterhead_neighbors(end3))] , ...
 [y_vals(clusterhead_neighbors(end2))
y_vals(clusterhead_neighbors(end3))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end3))
x_vals(clusterhead_neighbors(end4))] , ...
 [y_vals(clusterhead_neighbors(end3))
y_vals(clusterhead_neighbors(end4))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end4))
x_vals(clusterhead_neighbors(end5))] , ...
 [y_vals(clusterhead_neighbors(end4))
y_vals(clusterhead_neighbors(end5))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end5))
x_vals(clusterhead_neighbors(end6))] , ...
 [y_vals(clusterhead_neighbors(end5))
y_vals(clusterhead_neighbors(end6))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end6))
x_vals(clusterhead_neighbors(end7))] , ...
 [y_vals(clusterhead_neighbors(end6))
y_vals(clusterhead_neighbors(end7))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end7))
x_vals(clusterhead_neighbors(end8))] , ...
 [y_vals(clusterhead_neighbors(end7))
y_vals(clusterhead_neighbors(end8))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end8))
x_vals(clusterhead_neighbors(end9))] , ...
 [y_vals(clusterhead_neighbors(end8))
y_vals(clusterhead_neighbors(end9))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end9))
x_vals(clusterhead_neighbors(end10))] , ...
 [y_vals(clusterhead_neighbors(end9))
y_vals(clusterhead_neighbors(end10))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end10))
x_vals(clusterhead_neighbors(end11))] , ...
 [y_vals(clusterhead_neighbors(end10))
y_vals(clusterhead_neighbors(end11))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end11))
x_vals(clusterhead_neighbors(end12))] , ...

98

 [y_vals(clusterhead_neighbors(end11))
y_vals(clusterhead_neighbors(end12))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end12))
x_vals(clusterhead_neighbors(end13))] , ...
 [y_vals(clusterhead_neighbors(end12))
y_vals(clusterhead_neighbors(end13))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end13))
x_vals(clusterhead_neighbors(end14))] , ...
 [y_vals(clusterhead_neighbors(end13))
y_vals(clusterhead_neighbors(end14))],'go-', 'LineWidth',2)
 plot([x_vals(clusterhead_neighbors(end14))
x_vals(clusterhead_neighbors(end15))] , ...
 [y_vals(clusterhead_neighbors(end14))
y_vals(clusterhead_neighbors(end15))],'go-', 'LineWidth',2)

99

%beamforming function
clear all
close all
clc

global c f l b Im Nx Ny
c=3e8;
f=0.3e9;
l=c/f;
b=2*pi/l;

GdBlsavg=zeros(181,181);
X300
Y300

NumIter=10;
for i=1:NumIter;
 XX=X300(i,:);
 YY=Y300(i,:);
 XX=XX';
 YY=YY';
XXX=[ones(7,1) XX];
YYY=YY;
C(:,i)=XXX\YYY;
end

F=C(2,:);
FF=F.*(180/pi);

%%%% X,Y matrix 100x7
NumIter=10;

for i=1:NumIter;
 x=X300(i,:)';
 y=Y300(i,:)';

 x=x-x(1);
 y=y-y(1);

Nx=7 ; % Nx number of array elements in x direction
Ny=1 ; % Ny number of array elements in y direction

theta0=0 ; % Elevation angle theta (degrees)
theta0=theta0*pi/180;

phi0=FF(i); % Azimuth angle phi (degrees)
phi0=phi0*pi/180;
phi_ang=FF(i); % Angle phi for beampattern

phi00=0;
phi00=phi00*pi/180;
phi00_ang=phi00;

100

%%%%%%%%% Uniform array (reference) %%%%%%%%%%
dx=l/2; % ideal distance ?/2 in x-direction
xn=(0:Nx-1)*dx;
xn=repmat(xn',1,Ny);
xn=reshape(xn,Nx*Ny,1);

dy=l/2; % ideal distance ?/2 in y-direction
yn=(0:Ny-1)*dy;
yn=repmat(yn,Nx,1);
yn=reshape(yn,Nx*Ny,1);

%%%%%%%%% End of uniform array %%%%%%%%%%%

%%%%%%%%% Beampattern Uniform Array
Im=ones(Nx*Ny,1); % Amplitudes
wref=weights2(xn,yn,theta0,phi00); % Reference weights (uniform
array)
Gref=gain2D(wref,xn,yn);
GdBref=10*log10(Gref/max(max(Gref))); % Gain for reference (uniform
array)

%%%%%%%%% Beampattern with errors - LS solution
theta=-90:90;
th=theta*pi/180;

dn=exp(j*b*(xn*sin(th)*cos(phi00)+yn*sin(th)*sin(phi00))); % steering
vector for ULA
Fdes=wref'*dn;
d=exp(j*b*(x*sin(th)*cos(phi0)+y*sin(th)*sin(phi0))); % steering
vector

ww=Fdes/d;
ww=ww'; % or ww=inv(d*d')*d*Fdes';

Gls=gain2D(ww,x,y);
GdBls=10*log10(Gls/max(max(Gref)));
GdBlsavg=GdBlsavg+GdBls;
end

GdBlsavg=GdBlsavg/NumIter;

figure(3);
theta=-90:90;
plot(theta,GdBref(:,phi00_ang+90+1),'b-','Linewidth',2);
hold on;
plot(theta,GdBlsavg(:,phi00_ang+90+1),'r--','Linewidth',1);
grid on;
legend('Ideal Linear','Actual Positions');
axis([-85 85 -50 5]);
title('Fig.1 : Average Beampattern for 7 linear array elements and
given \phi','Fontsize',12);
xlabel('\theta (degrees)','Fontsize',12);
ylabel('Power Gain (dB),' ,'Fontsize',12);

101

LIST OF REFERENCES

[1] P.J. Vincent, M. Tummala and J. McEachen, “An Energy-Efficient Approach for
Information Transfer from Distributed Wireless Sensor Systems,” Proceeding of
the 2006 IEEE International Conference on System of Systems Engineering, Los
Angeles, CA, USA, pp. 100-105, April 2006.

[2] M. Tummala, C.C. Wai and P. Vincent, “Distributed Beamforming in Wireless

Sensor Networks,” Proceedings of the 39th Asilomar Conference on Signals,
Systems and Computers, pp 793-797, October-November 2005.

[3] P.J. Vincent, M. Tummala and J. McEachen, “A New Method for Distributing

Power Usage across a Sensor Network,” Proceedings of the 3rd Annual IEEE
Communications Society on Sensor and Ad Hoc Communications and Networks,
SECON’06,Vol 2, pp. 518-526, September 2006.

[4] J. Lee, S. Venkatesh, and M. Kumar, “ Formation of a geometric pattern with a

mobile wireless sensor network.” J. Robot. Syst. 21, 10 (Oct. 2004), 517-530.

[5] G. Elissaios and A. Manikas, “Array Formation in Arrayed Wireless Sensor

Networks,” Communications and Signal Processing Research Group,” HERMIS-
mu-pi International Journal of Computer Mathematics and its Applications, vol.6,
pp.122-134, March 2006.

[6] H. Ochiai et al., “Collaborative Beamforming for Distributed Wireless Ad Hoc

Sensor Networks,” IEEE Trans. on Signal Processing, Vol 53, pp 4110-4124,
March 2005.

[7] R. Shorey et al., Mobile, Wireless, and Sensor Networks, Technology,

Applications, and Future Directions, IEEE Press & WILEY-INTERSCIENCE,
2006.

[8] I. Akyildiz et al., “A Survey on Sensor Networks,”, IEEE Communications

Magazine, Vol 40, pp 102-114, August 2002.

[9] N. Bulusu et al., “Scalable Coordination for Wireless Sensor Networks: Self-

Configuring Localization Systems,” ISCTA 2001, Ambleside, UK, July 2001.

[10] D. Estrin et al., “Next Century Challenges: Scalable Coordination in Sensor

Networks,”, In Mobile Computing and Networking, pp 263-270, 1999.

[11] M. Yarvis and W. Ye, Tiered Architectures in Sensor Networks, Handbook of

Sensor Networks: Compact Wireless and Wired Sensing Systems, Ch. 13, CRC
Press, 2005.

102

[12]] E. Shlh et al., “Physical Layer Driven Protocol and Algorithm Design for Energy-
Efficient Wireless Sensor Networks,” Proc. ACM MobiCom ’01, pp272-86,
Rome-Italy, July 2001.

[13] W.L. Stutzman and A. Garry. Thiele, Antenna Theory and Design, John Wiley &

Sons, NY, 1998.

[14] United States Naval Academy, “Uniform Random Area Search”,

http://www.nadn.navy.mil/MathDept/courses/pre97/sm230/urs.htm, Last
Accessed May 19, 2007.

[15] C. C. Wai, “Distributed Beamforming in Wireless Sensor Networks,” Master’s

Thesis, Naval Postgraduate School, Monterey, CA, December 2004.

[16] S. Leon, Linear Algebra with applications, Prentice Hall, 6th edition, 2002.

[17] N. Papalexidis, “Distributed Beamforming in Wireless Sensor Networks,” EE and

Master’s Thesis, Naval Postgraduate School, Monterey, CA, June 2007.

[18] M. I. Skolnik, Introduction to Radar Systems, 3rd edition, McGrow-Hill, New

York, NY, 2001.

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Hellenic Navy General Staff
Department B2
Athens, Greece

4. Professor Jeffrey Knorr, Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Professor Murali Tummala
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Professor John C. McEachen
 Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California

7. CDR T. Owens Walker III
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. LT Charalampos Gkionis HN
Hellenic Navy General Staff
Athens, Greece

9. Mike Niermann
SPAWAR
Charleston, South Carolina

10. Martin Kruger
ONR
Arlington, Virginia

104

11. Bernie Schneider
SOCOM
McDill AFB, Florida

12. Jamie Carson
SRC
Charleston, South Carolina

13. George Hinckley
Virginia Advanced R&D Initiative
Quantico, Virginia

14. Richard Wylly
SRC
Charleston, South Carolina

